【题目】已知某中学联盟举行了一次“盟校质量调研考试”活动,为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为
分,得分取正整数,抽取学生的分数均在
之内)作为样本(样本容量为
)进行统计,按照
的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在
的数据)
![]()
(Ⅰ)求样本容量
和频率分布直方图中的
的值;
(Ⅱ)在选取的样本中,从成绩在
分以上(含
分)的学生中随机抽取
名学生参加“省级学科基础知识竞赛”,求所抽取的
名学生中恰有一人得分在
内的概率.
科目:高中数学 来源: 题型:
【题目】某企业实行裁员增效,已知现有员工
人,每人每年可创纯收益(已扣工资等)1万元,据评估,在生产条件不变的情况下,每裁员一人,则留岗员工每人每年可多创收0.01万元,但每年需付给下岗工人每位0.4万元的生活费,并且企业正常运转所需人数不得少于现有员工的
,设该企业裁员
人后,年纯收益为
万元.
(1)写出
关于
的函数关系式,并指出
的取值范围;
(2)当
时,该企业应裁员多少人,才能获得最大的经济效益(注:在保证能取得最大的经济效益的情况下,能少裁员,应尽量少裁员)?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点
作一直线与抛物线
交于
,
两点,点
是抛物线
上到直线
的距离最小的点,直线
与直线
交于点
.
![]()
(Ⅰ)求点
的坐标;
(Ⅱ)求证:直线
平行于抛物线的对称轴.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,已知曲线
,以平面直角坐标系
的原点
为极点,
轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线
.
(1)将曲线
上的所有点的横坐标、纵坐标分别伸长为原来的
倍后得到曲线
.试写出直线
的直角坐标方程和曲线
的参数方程:
(2)在曲线
上求一点
,使点
到直线
的距离最大,并求出此最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按
元/次收费, 并注册成为会员, 对会员逐次消费给予相应优惠,标准如下:
消费次第 | 第 | 第 | 第 | 第 |
|
收费比例 |
|
|
|
|
|
该公司从注册的会员中, 随机抽取了
位进行统计, 得到统计数据如下:
消费次第 | 第 | 第 | 第 | 第 | 第 |
频数 |
|
|
|
|
|
假设汽车美容一次, 公司成本为
元, 根据所给数据, 解答下列问题:
(1)估计该公司一位会员至少消费两次的概率;
(2)某会员仅消费两次, 求这两次消费中, 公司获得的平均利润;
(3)设该公司从至少消费两次, 求这的顾客消费次数用分层抽样方法抽出
人, 再从这
人中抽出
人发放纪念品, 求抽出
人中恰有
人消费两次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组
,第二组
,…,第五组
,下图是按上述分组方法得到的频率分布直方图.
![]()
(1)根据频率分布直方图,估计这50名学生百米测试成绩的平均值;
(2)若从第一组、第五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一台机器由于使用时间较长,生产的零件有一些会有缺损,按不同转速生产出来的零件有缺损的统计数据如表所示:
![]()
(1)作出散点图;
(2)如果
与
线性相关,求出回归直线方程.
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围内?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘估计分别为,
, ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据某电子商务平台的调查统计显示,参与调查的
位上网购物者的年龄情况如下图.
(1)已知
、
、
三个年龄段的上网购物者人数成等差数列,求
的值;
(2)该电子商务平台将年龄在
之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放
元的代金券,潜在消费人群每人发放
元的代金券.已经采用分层抽样的方式从参与调查的
位上网购物者中抽取了
人,现在要在这
人中随机抽取
人进行回访,求此三人获得代金券总和
的分布列与数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位射击运动员,在某天训练中已各射击10次,每次命中的环数如下:
甲 7 8 7 9 5 4 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
(Ⅰ)通过计算估计,甲、乙二人的射击成绩谁更稳;
(Ⅱ)若规定命中8环及以上环数为优秀,请依据上述数据估计,在第11次射击时,甲、乙人分别获得优秀的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com