【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系.已知点
的极坐标为
,曲线
的参数方程为
(
为参数).
(1)直线
过
且与曲线
相切,求直线
的极坐标方程;
(2)点
与点
关于
轴对称,求曲线
上的点到点
的距离的取值范围.
科目:高中数学 来源: 题型:
【题目】如图1,在边长为1的等边三角形
中,
分别是
,
上的点,
,
是
的中点,
与
交于点
,
沿
折起,得到如图2所示的三棱锥
,其中
.
![]()
(1)求证:平面
平面![]()
(2)若
为
,
上的中点,
为
中点,求异面直线
与
所成角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
的图象关于直线
对称,且图象上相邻最高点的距离为
.
⑴求
的解析式;
⑵将
的图象向右平移
个单位,得到
的图象若关于
的方程
在
上有唯一解,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
经过点
,
,且它的圆心在直线
上.
(Ⅰ)求圆
的方程;
(Ⅱ)求圆
关于直线
对称的圆的方程。
(Ⅲ)若点
为圆
上任意一点,且点
,求线段
的中点
的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点
处下上至
处有两种路径.一种是从
沿直线步行到
,另一种是先从
沿索道乘缆车到
,然后从
沿直线步行到
.现有甲、乙两位游客从
处下山,甲沿
匀速步行,速度为
.在甲出发
后,乙从
乘缆车到
,在
处停留
后,再从
匀速步行到
,假设缆车匀速直线运动的速度为
,山路
长为1260
,经测量
,
.
![]()
(1)求索道
的长;
(2)问:乙出发多少
后,乙在缆车上与甲的距离最短?
(3)为使两位游客在
处互相等待的时间不超过
,乙步行的速度应控制在什么范围内?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com