【题目】设函数
.
(1)若曲线
在点
处的切线与
轴垂直,求实数
的值;
(2)若
在
处取得极大值,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数
为奇函数,
,其中
.
(1)若函数
的图像过点
,求实数
和
的值;
(2)若
,试判断函数
在
上的单调性并证明;
(3)设函数
若对每一个不小于
的实数
,都恰有一个小于
的实数
,使得
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
,若存在实数
,使得
为
上的奇函数,则称
是位差值为
的“位差奇函数”.
(1)判断函数
和
是否为位差奇函数?说明理由;
(2)若
是位差值为
的位差奇函数,求
的值;
(3)若
对任意属于区间
中的
都不是位差奇函数,求实数
、
满足的条件.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
中,
,
,
的前
项和为
,且满足
(
).
(1)试求数列
的通项公式;
(2)令
,
是
的前
项和,证明:
;
(3)证明:对任意给定的
,均存在
,使得
时,(2)中的
恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数
的定义域为
,其图象上任一点
都满足
.
①函数
一定是偶函数;②函数
可能既不是偶函数也不是奇函数;
③函数
若是偶函数,则值域是
或
;④函数
可以是奇函数;
⑤函数
的值域是
,则
一定是奇函数.
其中正确命题的序号是__________(填上所有正确的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
是坐标原点,椭圆
:
的左右焦点分别为
,
,点
在椭圆上,若
的面积最大时
且最大面积为
.
(1)求椭圆
的标准方程;
(2)直线
:
与椭圆
在第一象限交于点
,点
是第四象限内的点且在椭圆
上,线段
被直线
垂直平分,直线
与椭圆交于另一点
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—4:坐标系与参数方程]:在直角坐标系
中,直线
的参数方程为
(t为参数,
),以坐标原点为极点,以x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为
,已知直线
与曲线C交于不同的两点A,B.
(1)求直线
的普通方程和曲线C的直角坐标方程;
(2)设P(1,2),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
、
为椭圆
(
)和双曲线
的公共顶点,
、
分为双曲线和椭圆上不同于
、
的动点,且满足
,设直线
、
、
、
的斜率分别为
、
、
、
.
(1)求证:点
、
、
三点共线;
(2)求
的值;
(3)若
、
分别为椭圆和双曲线的右焦点,且
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com