【题目】已知函数
.
(1)求曲线
在点
处的切线方程;
(2)证明:
.
【答案】(1)所求切线方程为
;(2)![]()
【解析】
试题(1)先求出导函数
,根据对数的几何意义可得切线斜率,利用点斜式可得切线方程;(2)要证
,只需证
,利用导数研究两函数的单调性,从而求出两函数的最值即可证明
,进而可得结论.
试题解析:(1)因为
,
所以
,
因为
,所以曲线
在点
处的切线方程为
.
(2)证明:要证
,只需证
,
设
,
则
,
令
得
,令
得
,所以
,
因为
,所以
,
又
,所以
,
从而
,即
.
【方法点晴】本题主要考查利用导数求曲线切线、利用导数研究函数的单调性进而求最值以及利用导数证明不等式,属于难题.求曲线切线方程的一般步骤是:(1)求出
在
处的导数,即
在点![]()
出的切线斜率(当曲线
在
处的切线与
轴平行时,在 处导数不存在,切线方程为
);(2)由点斜式求得切线方程
.
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线
与
轴相交于点
,
两点,
是该抛物线上位于第一象限内的点.
![]()
(Ⅰ) 记直线
的斜率分别为
,求证:
为定值;
(Ⅱ)过点
作
,垂足为
.若
关于
轴的对称点恰好在直线
上,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其范围为[0,10],分别有五个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵,晚高峰时段(T≥2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.
![]()
(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?
(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角梯形PBCD中,∠D=∠C
,BC=CD=2,PD=4,A为PD的中点,如图1,将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,如图2.
![]()
(1)求证:SA⊥平面ABCD;
(2)若E为SD中点,求D点到面EAC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方
向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这
样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】蝴蝶定理因其美妙的构图,像是一只翩翩起舞的蝴蝶,一代代数学名家蜂拥而证,正所谓花若芬芳蜂蝶自来.如图,已知圆
的方程为
,直线
与圆
交于
,
,直线
与圆
交于
,
.原点
在圆
内.
![]()
(1)求证:
.
(2)设
交
轴于点
,
交
轴于点
.求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形
与梯形
所在的平面互相垂直,
,
,点
在线段
上.
![]()
(Ⅰ) 若点
为
的中点,求证:
平面
;
(Ⅱ) 求证:平面
平面
;
(Ⅲ) 当平面
与平面
所成二面角的余弦值为
时,求
的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com