【题目】一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动5圈,如果当水轮上点P从水中浮现时(图象P0点)开始计算时间,且点P距离水面的高度f(t)(米)与时间t(秒)满足函数:f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|<
). ![]()
(1)求函数f(t)的解析式;
(2)点P第二次到达最高点要多长时间?
【答案】
(1)解:依题意可知z的最大值为6,最小为﹣2,∴
,
,∴f(t)=4sin(
φ)+2,当t=0时,f(t)=0,得sinφ=﹣
,φ=﹣
,
故所求的函数关系式为f(t)=4sin(
)+2,
(2)解:令f(t)=4sin(
)+2=6,)sin(
)=1,
= ![]()
得t=16,
故点P第二次到达最高点大约需要16s.
【解析】(1)先根据z的最大和最小值求得A和B,利用周期求得ω,当x=0时,z=0,进而求得φ的值,则函数的表达式可得;(2)令f(t)=4sin(
)+2=6,)sin(
)=1,
=
解得t.
【考点精析】本题主要考查了二次函数的性质的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C的所对的边分别为a,b,c,且a2+b2=ab+c2 .
(Ⅰ) 求tan(C﹣
)的值;
(Ⅱ) 若c=
,求S△ABC的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)的图象如图所示,曲线BCD为抛物线的一部分. ![]()
(Ⅰ)求f(x)解析式;
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2﹣x),求x的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】长方体ABCD﹣A1B1C1D1中,AA1=2,BC=
,E为CC1的中点. ![]()
(1)求证:平面A1BE⊥平面B1CD;
(2)平面A1BE与底面A1B1C1D1所成的锐二面角的大小为θ,当
时,求θ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(1,3),圆C:(x﹣m)2+y2=
过点A(1,﹣
),F点为抛物线y2=2px(p>0)的焦点,直线PF与圆相切.
(1)求m的值与抛物线的方程;
(2)设点B(2,5),点 Q为抛物线上的一个动点,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面为平行四边形的四棱锥O﹣ABCD中,BC⊥平面OAB,E为OB中点,OA=AD=2AB=2,OB=
. ![]()
(1)求证:平面OAD⊥平面ABCD;
(2)求二面角B﹣AC﹣E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn , 且a1=2,an+1=
Sn(n=1,2,3,…).
(1)证明:数列{
}是等比数列;
(2)设bn=
,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(a>b>0)的左、右焦点分别为F1(﹣3,0)、F2(3,0),直线y=kx与椭圆交于A、B两点.
(1)若三角形AF1F2的周长为
,求椭圆的标准方程;
(2)若
,且以AB为直径的圆过椭圆的右焦点,求直线y=kx斜率k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com