【题目】某射击小组有甲、乙、丙三名射手,已知甲击中目标的概率是
,甲、丙二人都没有击中目标的概率是
,乙、丙二人都击中目标的概率是
.甲乙丙是否击中目标相互独立.
(1)求乙、丙二人各自击中目标的概率;
(2)设乙、丙二人中击中目标的人数为X,求X的分布列和数学期望.
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为
(t为参数),圆C的极坐标方程为![]()
(1)求直线l和圆C的直角坐标方程;
(2)若点
在圆C上,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的一个焦点与抛物线
的焦点重合,且椭圆
的离心率为
.
(1)求椭圆
的标准方程;
(2)直线
交椭圆
于
、
两点,线段
的中点为
,直线
是线段
的垂直平分线,求证:直线
过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,如图甲,正方形
的边长为4,
,
分别为
,
的中点,以
为棱将正方形
折成如图乙所示,且
,点
在线段
上且不与点
,
重合,直线
与由
,
,
三点所确定的平面相交,交点为
.
![]()
(1)若
,试确定点
的位置,并证明直线
平面
;
(2)若
,求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四面体
,
,
,
,
.
![]()
(1)若
中点是
,求证:
面
;
(2)若
是线段
上的动点,
是面
上的动点,且线段
,
的中点是
,求动点
的轨迹与四面体
围成的较小的几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】江苏省滨临黄海,每年夏秋季节常常受到台风的侵袭.据监测,台风
生成于西北太平洋洋面上,其中心位于
市南偏东
方向的
处,该台风先沿北偏西
方向移动
后在
处登陆,登陆点
在
市南偏东
方向
处,之后,台风
将以
的速度沿北偏西
方向继续移动.已知登陆时台风
的侵袭范围(圆形区域)半径为
,并以
的速度不断增大.(
)
![]()
![]()
(1)求台风
生成时中心
与
市的距离;
(2)台风
登陆后多少小时开始侵袭
市?(保留两位有效数字)
(参考数据:
,
,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com