【题目】若函数
对定义城内的每一个值
,在其定义域内都存在唯一的
,使得
成立,则称该函数为“
函数”.
(1)判断函数
是否为“
函数”,并说明理由;
(2)若函数
在定义域
上为“
函数”,求
的取值范围;
(3)已知函数
在定义域
上为“
函数”.若存在实数
,使得对任意的
,不等式
都成立,求实数
的取值范围.
【答案】(1)不是,理由见解析;
(2)
;
(3)
或
;
【解析】
(1)通过列举的方式可判断不是反函数;
(2)由函数
在定义域
上为“
函数”可得
,
,
可代换为
,结合导数可求得范围;
(3)由“
函数”定义可先求证函数在
上单调,且
,求得参数
,由
对于任意实数
恒成立整理得
,变形成关于
的二次不等式
,再令
进一步求得
值即可
(1)
不是为“
函数”.
若
,当
或
时,满足
,
此时
不唯一,所以
不是为“
函数”.
(2)因为函数
在
为増函数,且在
上为“
函数”,
所以
,即
.
又因为
,所以
.
所以
.
令
,则
,
因为
,所以
,所以
在
上单调递减,
所以
,即
.
(3)若
图像对称轴
,设
,且
,
关于
对称,
此时,
,由条件可知,存在
,使
,这与“
函数”定义矛盾.
所以
在
上单调,且
,
由
,得
,解得
或
.
检验:
在
上单调,所以
.
不等式即
,
整理得
,由题意知,上式对任意
恒成立.
得
,
整理得
,由题意知,存在
使得上式成立,
所以
或
.
解得
或
.
科目:高中数学 来源: 题型:
【题目】在正方体ABCD
A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线( )
A.不存在B.有且只有两条C.有且只有三条D.有无数条
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:
及其上一点A(2,4)
![]()
(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;
(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;
(3)设点T(t,o)满足:存在圆M上的两点P和Q,使得
,求实数t的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,
且满足:![]()
(1)证明:
是等比数列,并求数列
的通项公式.
(2)设
,若数列
是等差数列,求实数
的值;
(3)在(2)的条件下,设
记数列
的前
项和为
,若对任意的
存在实数
,使得
,求实数
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数).
(1)求函数
的极值;
(2)问:是否存在实数
,使得
有两个相异零点?若存在,求出
的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
,
是两条不同的直线,
,
,
是三个不同的平面,给出下列四个命题:
①若
,
,则
,
为异面直线; ②若
,
,
,则
;
③若
,
,则
; ④若
,
,
,则
.
则上述命题中真命题的序号为( )
A.①②B.③④C.②D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为
的奇函数
,满足
,下面四个关于函数
的说法:①存在实数
,使关于
的方程
有
个不相等的实数根;②当
时,恒有
;③若当
时,
的最小值为
,则
;④若关于
的方程
和
的所有实数根之和为零,则
.其中说法正确的有______.(将所有正确说法的标号填在横线上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.
(Ⅰ)求证:AB⊥平面ADC;
(Ⅱ)若AD=2,直线CA与平面ABD所成角的正弦值为
,求二面角E-AD-C的余弦值.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com