【题目】如图所示,在三棱锥S—ABC中,△ABC是等腰三角形,AB=BC=2a,∠ABC=120°,SA=3a,且SA⊥平面ABC,则点A到平面SBC的距离为( )
![]()
A.
B. ![]()
C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还
升,
升,
升,1斗为10升,则下列判断正确的是( )
A.
,
,
依次成公比为2的等比数列,且![]()
B.
,
,
依次成公比为2的等比数列,且![]()
C.
,
,
依次成公比为
的等比数列,且![]()
D.
,
,
依次成公比为
的等比数列,且![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q成立的必要不充分条件,求实数m的取值范围;
(2)若
是
成立的充分不必要条件,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在[-1,1]上的奇函数,在[0,1]上f(x)=2x+ln(x+1)-1.
(1)求函数f(x)的解析式;并判断f(x)在[-1,1]上的单调性(不要求证明);
(2)解不等式f(2x-1)+f(1-x2)≥0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
(
)的离心率为
,
,
分别是它的左、右焦点,且存在直线
,使
,
关于
的对称点恰好是圆
:
(
,
)的一条直径的两个端点.
(1)求椭圆
的方程;
(2)设直线
与抛物线
相交于
、
两点,射线
、
与椭圆
分别相交于
、
.试探究:是否存在数集
,当且仅当
时,总存在
,使点
在以线段
为直径的圆内?若存在,求出数集
;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的标准方程为
,
为抛物线
上一动点,
(
)为其对称轴上一点,直线
与抛物线
的另一个交点为
.当
为抛物线
的焦点且直线
与其对称轴垂直时,
的面积为18.
(1)求抛物线
的标准方程;
(2)记
,若
值与
点位置无关,则称此时的点
为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com