【题目】如图,把边长为4的正
沿中位线
折起使点
到
的位置.
![]()
(1)在棱
上是否存在点
,使得
平面
?若存在,确定
的位置,若不存在,说明理由;
(2)若
,求四棱锥
的体积.
科目:高中数学 来源: 题型:
【题目】临近开学季,某大学城附近的一款“网红”书包销售火爆,其成本是每件15元.经多数商家销售经验,这款书包在未来1个月(按30天计算)的日销售量
(个)与时间
(天)的关系如下表所示:
时间( | 1 | 4 | 7 | 11 | 28 | … |
日销售量( | 196 | 184 | 172 | 156 | 88 | … |
未来1个月内,前15天每天的价格
(元/个)与时间
(天)的函数关系式为
(且
为整数),后15天每天的价格
(元/个)与时间
(天)的函数关系式为
(且
为整数).
(1)认真分析表格中的数据,用所学过的一次函数、反比例函数的知识确定一个满足这些数据
(个)与
(天)的关系式;
(2)试预测未来1个月中哪一天的日销售利润最大,最大利润是多少?
(3)在实际销售的第1周(7天),商家决定每销售1件商品就捐赠
元利润
给该城区养老院.商家通过销售记录发现,这周中,每天扣除捐赠后的日销售利润随时间
(天)的增大而增大,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:首项为
且公比为正数的等比数列为“
数列”.
(Ⅰ)已知等比数列
(
)满足:
,
,判断数列
是否为“
数列”;
(Ⅱ)设
为正整数,若存在“
数列”
(
),
对任意不大于
的正整数
,都有
成立,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在党中央的正确指导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.下图是国家卫健委给出的全国疫情通报,甲、乙两个省份从2月7日到2月13日一周的新增“新冠肺炎”确诊人数的折线图如下:
![]()
根据图中甲、乙两省的数字特征进行比对,通过比较把你得到最重要的两个结论写在答案纸指定的空白处.
①_________________________________________________.
②_________________________________________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的右焦点为
,点
分别是椭圆
的上、下顶点,点
是直线
上的一个动点(与
轴的交点除外),直线
交椭圆于另一个点
.
![]()
(1)当直线
经过椭圆的右焦点
时,求
的面积;
(2)①记直线
的斜率分别为
,求证:
为定值;
②求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,过椭圆右焦点
的直线
与椭圆交于
,
两点,当直线
与
轴垂直时,
.
(1)求椭圆
的标准方程;
(2)当直线
与
轴不垂直时,在
轴上是否存在一点
(异于点
),使
轴上任意点到直线
,
的距离均相等?若存在,求
点坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com