精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+c,(a,b,c∈R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,有f(x)≤
18
(x+2)2
成立.
(1)若f(x)满足f(x1)=f(x2)(x1≠x2),求证:f(x1+x2)=c;
(2)求f(2)的值;
(3)若f(-2)=0,求f(x)的表达式.
分析:(1)利用f(x1)=f(x2)(x1≠x2),通过对称轴即可证明f(x1+x2)=c;
(2)直接利用函数恒成立,求出f(2)的值;
(3)通过f(-2)=0,列出方程组,利用f(x)≥x恒成立,通过判别式求出a,b,c,即可求f(x)的表达式
解答:解:(1)f(x1)=f(x2)(x1≠x2),得对称轴为x=
x1+x2
2
=-
b
2a

x1+x2=-
b
a

所以f(x1+x2)=f(-
b
a
)=a•(-
b
a
)
2
-b•
b
a
+c
=c.
因为二次函数的对称轴为x=
x1+x2
2
,f(x1)=f(x2),
得f(x1+x2)=f(0)=c
 (2)由条件知 f(2)=4a+2b+c≥2恒成立
又∵取x=2时,f(2)=4a+2b+c≤
1
8
(2+2)2=2
与恒成立,
∴f(2)=2
 (3)∵
4a+2b+c=2
4a-2b+c=0

∴4a+c=2b=1,∴b=
1
2
,c=1-4a

又 f(x)≥x恒成立,即ax2+(b-1)x+c≥0恒成立.
a>0,△=(
1
2
-1)2-4a(1-4a)≤0

解出:a=
1
8
,b=
1
2
,c=
1
2

f(x)=
1
8
x2+
1
2
x+
1
2
点评:本题考查二次函数的性质,函数恒成立问题,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案