【题目】已知函数
,
(1)当
时,证明:函数
不是奇函数;
(2)判断函数
的单调性,并利用函数单调性的定义给出证明;
(3)若
是奇函数,且
在
时恒成立,求实数
的取值范围.
【答案】(1)详见解析(2)函数
在
上为单调增函数(3)![]()
【解析】
试题分析:(1)举个反例,使得f(-a)≠-f(a)即可;(2)利用函数的单调性进行证明即可,注意指数函数y=2x性质的运用;(3)先根据题意求出a的值,然后f(x)≥x2-4x+m在x∈[-2,2]时恒成立,将式子变形为f(x)-(x2-4x)≥m在x∈[-2,2]时恒成立即可,在研究左边函数的单调性,求出其最小值即可
试题解析:(1)当
时,
,因为
,
,
所以
,故
不是奇函数;
(2)函数
在
上为单调增函数,
证明:设
,则
∵
,∴
,
,且![]()
又∵
,∴![]()
∴
,故![]()
∴函数
在
上为单调增函数
(3)因为
是奇函数,所以
对任意
恒成立。
即
对任意
恒成立.
化简整理得
对任意
恒成立. ∴
因为
在
时恒成立,
令
,设
,且
,
则![]()
由(2)可知,
,又
,
所以
,即
,
故函数
在
上是增函数 (直接判断出单调性也给分)
所以
,由![]()
![]()
因此
的取值范围是
科目:高中数学 来源: 题型:
【题目】一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3 cm,高为4 cm,圆锥的高为3 cm,画出此几何体的直观图.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4一4:坐标系与参数方程
已知在直角坐标系x0y中,曲线
:
(
为参数),在以平面直角坐标系的原点)为极点,x轴的正半轴为极轴,取相同单位长度的极坐标系中,曲线
:
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)曲线
上恰好存在三个不同的点到曲线
的距离相等,分别求这三个点的极坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品每件成本5元,售价14元,每星期卖出75件.如果降低价格,销售量可以增加,且每星期多卖出的商品件数
与商品单价的降低值
(单位:元,
)的平方成正比,已知商品单价降低1元时,一星期多卖出5件.
(1)将一星期的商品销售利润
表示成
的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】销售甲、乙两种商品所得利润分别是
(单位:万元)和
(单位:万元),它们与投入资金
(单位:万元)的关系有经验公式
,
. 今将
万元资金投入经营甲、乙两种商品,其中对甲种商品投资
(单位:万元),
(1)试建立总利润
(单位:万元)关于
的函数关系式;
(2)当对甲种商品投资
(单位:万元)为多少时?总利润
(单位:万元)值最大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(a>b>0)的左、右焦点为F1、F2,点A
在椭圆上,且
与x轴垂直.
(1)求椭圆的方程;
(2)过A作直线与椭圆交于另外一点B,求△AOB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
,
)和函数
(
,
,
).问:(1)证明:
在
上是增函数;
(2)把函数
和
写成分段函数的形式,并画出它们的图象,总结出
的图象是如何由
的图象得到的.请利用上面你的结论说明:
的图象关于
对称;
(3)当
,
,
时,若
对于任意的
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A.若直线
平面
,直线
平面
,则直线
不一定平行于直线![]()
B.若平面
不垂直于平面
,则
内一定不存在直线垂直于平面![]()
C.若平面
平面
,则
内一定不存在直线平行于平面![]()
D.若平面
平面
,平面
平面
,
,则
一定垂直于平面![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com