【题目】设点
为圆
上的动点,过点
作
轴的垂线,垂足为
,动点
满足
,记点
的轨迹为
.
(1)求曲线
的方程;
(2)已知点
,斜率为
的直线
与曲线
交于不同的两点
,
,且满足
,试求
的取值范围.
科目:高中数学 来源: 题型:
【题目】某单位为了更好地应对新型冠状病毒肺炎疫情,对单位的职工进行防疫知识培训,所有职工选择网络在线培训和线下培训中的一种方案进行培训.随机抽取了140人的培训成绩,统计发现样本中40个成绩来自线下培训职工,其余来自在线培训的职工,并得到如下统计图表:
![]()
(1)写出线下培训茎叶图中成绩的中位数,估算在线培训直方图的中位数(保留一位小数);
(2)得分90分及以上为成绩优秀,完成下边列联表,并判断是否有
的把握认为成绩优秀与培训方式有关?
优秀 | 非优秀 | 合计 | |
线下培训 | |||
在线培训 | |||
合计 |
附:
.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
经过椭圆
:
的左右焦点
,且与椭圆
在第一象限的交点为
,且
三点共线,直线
交椭圆
于
,
两点,且
(
).
(1)求椭圆
的方程;
(2)当三角形
的面积取得最大值时,求直线
的方程.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为椭圆
的右焦点,C的准线与E交于P,Q两点,且
.
(1)求E的方程;
(2)过E的左顶点A作直线l交E于另一点B,且BO(O为坐标原点)的延长线交E于点M,若直线AM的斜率为1,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在党中央的正确领导下,通过全国人民的齐心协力,特别是全体一线医护人员的奋力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙两个地区采取防护措施后,统计了从2月7日到2月13日一周的新增“新冠肺炎”确诊人数,绘制成如图折线图:
![]()
(1)根据图中甲、乙两个地区折线图的信息,写出你认为最重要的两个统计结论;
(2)新冠病毒在进入人体后有一段时间的潜伏期,此期间为病毒传播的最佳时期,我们把与病毒感染者有过密切接触的人群称为密切接触者,假设每位密切接触者不再接触其他病毒感染者,10天内所有人不知情且生活照常.
(i)在不加任何防护措施的前提下,假设每位密切接触者被感染的概率均为
.第一天,若某位感染者产生
名密切接触者则第二天新增感染者平均人数为ap;第二天,若每位感染者都产生a名密切接触者,则第三天新增感染者平均人数为
;以此类推,记由一名感染者引发的病毒传播的第n天新增感染者平均人数为
.写出
,
;
(ii)在(i)的条件下,若所有人都配戴口罩后,假设每位密切接触者被感染的概率均为
,且满足关系
,此时,记由一名感染者引发的病毒传播的第n天新增感染者平均人数为
.当
最大,且
时,根据
和
的值说明戴口罩的必要性.(
精确到
)
参考公式:函数
的导函数
;
参考数据:
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,抛物线
的焦点为
,
(其中
)是
上的一点,且
.
(1)求抛物线
的方程;
(2)已知
为抛物线
上除顶点
之外的任意一点,在点
处的切线与
轴交于点
,过
点的直线
交抛物线于
,
两点,设
,
,
的斜率分别为
,
,
,求证:
,
,
成等比数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com