【题目】(本小题满分12分)
已知椭圆
:
的左、右顶点分别为A,B,其离心率
,点
为椭圆上的一个动点,
面积的最大值是
.
(1)求椭圆的方程;
(2)若过椭圆
右顶点
的直线
与椭圆的另一个交点为
,线段
的垂直平分线与
轴交于点
,当
时,求点
的坐标.
科目:高中数学 来源: 题型:
【题目】若函数f(x)=
(a>0,且a≠1)的值域为(﹣∞,+∞),则实数a的取值范围是( )
A.(3,+∞)
B.(0,
]
C.(1,3)
D.[
,1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如表是一个由n2个正数组成的数表,用aij表示第i行第j个数(i,j∈N),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a11=1,a31+a61=9,a35=48. ![]()
(1)求an1和a4n;
(2)设bn=
+(﹣1)na
(n∈N+),求数列{bn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
上一点
到其焦点
的距离为4,椭圆
的离心率
,且过抛物线的焦点
.
(1)求抛物线
和椭圆
的标准方程;
(2)过点
的直线
交抛物线
于
两不同点,交
轴于点
,已知
,
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2016年上半年,股票投资人袁先生同时投资了甲、乙两只股票,其中甲股票赚钱的概率为
,赔钱的概率是
;乙股票赚钱的概率为
,赔钱的概率为
.对于甲股票,若赚钱则会赚取5万元,若赔钱则损失4万元;对于乙股票,若赚钱则会赚取6万元,若赔钱则损失5万元.
(Ⅰ)求袁先生2016年上半年同时投资甲、乙两只股票赚钱的概率;
(Ⅱ)试求袁先生2016年上半年同事投资甲、乙两只股票的总收益的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
的方程为:
,直线
的方程为
.
(1)求证:直线
恒过定点;
(2)当直线
被圆
截得的弦长最短时,求直线
的方程;
(3)在(2)的前提下,若
为直线
上的动点,且圆
上存在两个不同的点到点
的距离为
,求点
的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在长方体ABCD﹣A1B1C1D1中,AA1=AD=a,E为CD上任意一点.
(I)求证:B1E⊥AD1;
(Ⅱ)若CD=
a,是否存在这样的E点,使得AD1与平面B1AE成45°的角?说明理由.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com