【题目】设
、
是双曲线
:
的两个焦点,
是
上一点,若
,
是△
的最小内角,且
,则双曲线
的渐近线方程是( )
A.
B. ![]()
C.
D. ![]()
【答案】B
【解析】
设|PF1|>|PF2|,由已知条件求出|PF1|=4a,|PF2|=2a,e
,进而求出b
,由此能求出双曲线C:
1的渐近线方程.
设|PF1|>|PF2|,则|PF1|﹣|PF2|=2a,
又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.
则∠PF1F2是△PF1F2的最小内角为30°,
∴| PF2|2=| PF1||2+|F1F2|2﹣2| PF1|||F1F2|cos30°,
∴(2a)2=(4a)2+(2c)2﹣2×4a×2c
,
同时除以a2,化简e2﹣2
e+3=0,
解得e
,∴c
,∴b
,
∴双曲线C:
1的渐近线方程为y
±
,
即
0.
故选:B.
科目:高中数学 来源: 题型:
【题目】已知双曲线
:
的左、右焦点分别为
、
,
为坐标原点,
是双曲线在第一象限上的点,直线
交双曲线
左支于点
,直线
交双曲线
右支于点
,若
,且
,则双曲线
的渐近线方程为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的倾斜角为
,且经过点
.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线
,从原点O作射线交
于点M,点N为射线OM上的点,满足
,记点N的轨迹为曲线C.
(Ⅰ)求出直线
的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线
与曲线C交于P,Q两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆柱
的一条母线,已知BC过底面圆的圆心O,D是圆O上不与点B、C重合的任意一点,![]()
![]()
:
![]()
(1)求直线AC与平面ABD所成角的大小;
(2)求点B到平面ACD的距离;
(3)将四面体ABCD绕母线AB旋转一周,求由
旋转而成的封闭几何体的体积;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分14分)如图,在边长为
的菱形
中,
,点
,
分别是边
,
的中点,
.沿
将△
翻折到△
,连接
,得到如图的五棱锥
,且
.
![]()
(1)求证:
平面
;
(2)求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高速公路隧道设计为单向三车道,每条车道宽4米,要求通行车辆限高5米,隧道全长1.5千米,隧道的断面轮廓线近似地看成半个椭圆形状(如图所示).
![]()
(1)若最大拱高
为6米,则隧道设计的拱宽
至少是多少米?(结果取整数)
(2)如何设计拱高
和拱宽
,才能使半个椭圆形隧道的土方工程量最小?(结果取整数)
参考数据:
,椭圆的面积公式为
,其中
,
分别为椭圆的长半轴和短半轴长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在边长为8的菱形
中,
,将
沿
折起,使点
到达
的位置,且二面角
为
.
![]()
(1)求异面直线
与
所成角的大小;
(2)若点
为
中点,求直线
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E:
焦点F,过点F且斜率为2的直线与抛物线交于A、B两点,且
.
(1)求抛物线E的方程;
(2)设O是坐标原点,P,Q是抛物线E上分别位于x轴两侧的两个动点,且![]()
①证明:直线PQ必过定点,并求出定点G的坐标;
②过G作PQ的垂线交抛物线于C,D两点,求四边形PCQD面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4—5:参数方程选讲]
在直角坐标系xoy中,曲线
的参数方程是
(t是参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线
的极坐标方程是![]()
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若两曲线交点为A、B,求![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com