15£®ÒÑÖªÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬Ë«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÒ»Ìõ½¥½üÏßÓëxÖáËù³ÉµÄ¼Ð½ÇΪ30¡ã£¬ÇÒË«ÇúÏߵĽ¹¾àΪ4$\sqrt{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèF1£¬F2·Ö±ðΪÍÖÔ²CµÄ×ó£¬ÓÒ½¹µã£¬¹ýF2×÷Ö±Ïßl£¨ÓëxÖá²»ÖØºÏ£©½»ÓÚÍÖÔ²ÓÚA£¬BÁ½µã£¬Ïß¶ÎABµÄÖеãΪE£¬¼ÇÖ±ÏßF1EµÄбÂÊΪk£¬ÇókµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉË«ÇúÏߵĽ¥½üÏß·½³Ì¼°Ð±Âʹ«Ê½£¬¼´¿ÉÇóµÃa2=3b2£¬c=2$\sqrt{2}$£¬¼´a2+b2=8£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±ÏßABµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨ÀíÇóµÃбÂÊØ­kØ­ÓÃt±íʾ£¬ÀûÓûù±¾²»µÈʽ¼´¿ÉÇóµÃkµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÒ»Ìõ½¥½üÏßÓëxÖáËù³ÉµÄ¼Ð½ÇΪ30¡ã£¬Ôò$\frac{b}{a}$=tan30¡ã=$\frac{\sqrt{3}}{3}$£¬¼´a2=3b2£¬
ÓÉ2c=4$\sqrt{2}$£®c=2$\sqrt{2}$£¬Ôòa2+b2=8£¬
½âµÃ£ºa2=8£¬b2=2£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºF2£¨2£¬0£©£¬Ö±ÏßABµÄ·½³Ì£ºx=ty+2£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
$\left\{\begin{array}{l}{x=ty+2}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨t2+3£©y2+4ty-2=0£¬
y1+y2=-$\frac{4t}{{t}^{2}+3}$£¬x1+x2=$\frac{12}{{t}^{2}+3}$£¬
ÔòE£¨$\frac{6}{{t}^{2}+3}$£¬-$\frac{2t}{{t}^{2}+3}$£©£¬
ÓÉF1£¨-2£¬0£©£¬ÔòÖ±ÏßF1EµÄбÂÊk=$\frac{\frac{2t}{{t}^{2}+3}}{-2-\frac{6}{{t}^{2}+3}}$=-$\frac{t}{{t}^{2}+6}$£¬
¢Ùµ±t=0ʱ£¬k=0£¬
¢Úµ±t¡Ù0ʱ£¬Ø­kØ­=$\frac{Ø­tØ­}{Ø­t{Ø­}^{2}+6}$=$\frac{1}{Ø­tØ­+\frac{6}{Ø­tØ­}}$¡Ü$\frac{1}{2\sqrt{6}}$£¬
¼´Ø­kØ­¡Ê£¨0£¬$\frac{\sqrt{6}}{12}$]£¬
¡àkµÄȡֵ·¶Î§[-$\frac{\sqrt{6}}{12}$£¬$\frac{\sqrt{6}}{12}$]£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬Ö±ÏßµÄбÂʹ«Ê½¼°»ù±¾²»µÈʽµÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®º¯Êýy=2sinxµÄͼÏóÉÏÒ»µã$£¨\frac{¦Ð}{3}£¬\frac{{\sqrt{3}}}{2}£©$´¦µÄÇÐÏßµÄÇãб½ÇΪ£¨¡¡¡¡£©
A£®$\frac{3¦Ð}{4}$B£®$\frac{¦Ð}{4}$C£®$\frac{2¦Ð}{3}$D£®$\frac{5¦Ð}{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1+alnx}{x}$£¨a£¾0£©£®
£¨¢ñ£©Èôº¯Êýf£¨x£©ÔÚx=1´¦È¡µÃ¼«Öµ£¬ÇÒº¯Êýy=f£¨x£©Í¼ÏóÉÏÒ»µãµÄÇÐÏßl¹ýÔ­µã£¬ÇólµÄ·½³Ì£»
£¨¢ò£©ÌÖÂÛf£¨x£©µÄµ¥µ÷ÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏBAC=60¡ã£¬AB=2£¬AC=1£¬DÊÇBC±ßÉÏÒ»µã£¬ÇÒ$\overrightarrow{CD}$=2$\overrightarrow{DB}$£¬Ôò$\overrightarrow{AD}$•$\overrightarrow{BC}$ µÄֵΪ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ä³¹¤³§ÎªÁ˶ÔÐÂÑз¢µÄÒ»ÖÖ²úÆ·½øÐкÏÀí¶¨¼Û£¬½«¸Ã²úÆ·°´ÊÂÏÈÄⶨµÄ¼Û¸ñ½øÐÐÊÔÏú£¬µÃµ½ÈçÏÂÊý¾Ý£º
µ¥¼Ûx£¨Ôª£©88.28.48.68.89
ÏúÁ¿y£¨¼þ£©908483807568
ÓɱíÖеÄÊý¾ÝµÃÏßÐԻع鷽³Ì$\widehat{y}$=bx+$\widehat{a}$ÖеÄb=-20£¬Ô¤²âµ±²úÆ·¼Û¸ñ¶¨Îª9.5£¨Ôª£©Ê±£¬ÏúÁ¿Îª60¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖª¹ØÓÚ¿Õ¼äÁ½Ìõ²»Í¬Ö±Ïßm£¬n£¬Á½¸ö²»Í¬Æ½Ãæ¦Á£¬¦Â£¬ÓÐÏÂÁÐËĸöÃüÌ⣺¢ÙÈôm¡Î¦ÁÇÒn¡Î¦Á£¬Ôòm¡În£»¢ÚÈôm¡Í¦ÂÇÒm¡Ín£¬Ôòn¡Î¦Â£»¢ÛÈôm¡Í¦ÁÇÒm¡Î¦Â£¬Ôò¦Á¡Í¦Â£»¢ÜÈôn?¦ÁÇÒm²»´¹Ö±ÓÚ¦Á£¬Ôòm²»´¹Ö±ÓÚn£®ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ¢Û£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ¶Ô³ÆÖá·½³Ì£»
£¨¢ò£©½«º¯Êýf£¨x£©µÄͼÏóÉϸ÷µãµÄ×Ý×ø±ê±£³Ö²»±ä£¬ºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶£¬È»ºóÔÙÏò×óÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»£¬µÃµ½º¯Êýg£¨x£©µÄͼÏó£®Èôa£¬b£¬c·Ö±ðÊÇ¡÷ABCÈý¸öÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß£¬a=2£¬c=4£¬ÇÒg£¨B£©=0£¬ÇóbµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=-x2+2lnxÓëg£¨x£©=ax+$\frac{1}{x}$£¨a¡ÊR£©ÓÐÏàͬµÄ¼«Öµµã£®
£¨¢ñ£©Çóº¯Êýg£¨x£©µÄ½âÎöʽ£»
£¨¢ò£©Ö¤Ã÷£º²»µÈʽf£¨x£©+2g£¨x£©£¾$\frac{2}{{e}^{x}}$-x2+2x£¨ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©£»
£¨¢ó£©²»µÈʽ$\frac{f£¨{x}_{1}£©-g£¨{x}_{2}£©}{b-1}$¡Ü1¶ÔÈÎÒâx1£¬x2¡Ê[$\frac{1}{e}$£¬3]ºã³ÉÁ¢£¬ÇóʵÊýbµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªµÈ²îÊýÁÐ{an}ÖУ¬a1=1£¬ÇÒa1£¬a2£¬a4+2³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ¼°ÆäǰnÏîºÍSn£»
£¨2£©Éè${b_n}={2^{{{£¨{-1}£©}^n}{a_n}}}$£¬ÇóÊýÁÐ{bn}µÄǰ2nÏîºÍT2n£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸