精英家教网 > 高中数学 > 题目详情
10.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)88.28.48.68.89
销量y(件)908483807568
由表中的数据得线性回归方程$\widehat{y}$=bx+$\widehat{a}$中的b=-20,预测当产品价格定为9.5(元)时,销量为60件.

分析 由题意求出$\overline{x}$,$\overline{y}$,利用公式求出$\hat{a}$,即可得出线性回归方程,当x=9.5时,可得结论.

解答 解:由题意:$\overline{x}$=$\frac{1}{6}(8+8.2+8.4+8.6+8.8+9)$=8.5;
$\overline{y}$=$\frac{1}{6}(90+84+83+80+75+68)$=80.
∵$\hat{b}$=-20.
∴$\hat{a}$=80+20×8.5=250,
从而得到回归直线方程为:y=-20x+250.
当x=9.5时,可得y=60.
故答案为:60.

点评 本题考查了线性回归方程的求法及应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.复数z=-2+i所对应的点在复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+3cost\\ y=-2+3sint\end{array}\right.$(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=5.
(1)求圆C的普通方程及直线l的直角坐标方程;
(2)求圆心C到直线l的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=lg(x2-3x+m)的定义域为R,则实数m的取值范围是($\frac{9}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题“若a>b,则ac>bc”的逆否命题是(  )
A.若a>b,则ac≤bcB.若ac≤bc,则a≤bC.若ac>bc,则a>bD.若a≤b,则ac≤bc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆C的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一条渐近线与x轴所成的夹角为30°,且双曲线的焦距为4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设F1,F2分别为椭圆C的左,右焦点,过F2作直线l(与x轴不重合)交于椭圆于A,B两点,线段AB的中点为E,记直线F1E的斜率为k,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-x2+2a+b(x∈R)的图象在x=0处的切线为y=bx.(e为自然对数的底数).
(Ⅰ)求a,b的值;
(Ⅱ)若k∈Z,且f(x)+$\frac{1}{2}$(3x2-5x-2k)≥0对任意x∈R恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图是判断“实验数”的程序框图,在[30,80]内的所有整数中,“实验数”的个数是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数y=f(x)的图象上存在不同两点M、N关于原点对称,则称点对[M,N]是函数y=f(x)的一对“和谐点对”(点对[M,N]与[N,M]看作同一对“和谐点对”).已知函数f(x)=$\left\{\begin{array}{l}{{x}^{3}-3x,x≤0}\\{|lnx|,x>0}\end{array}\right.$则此函数的“和谐点对”有(  )
A.0对B.1对C.2对D.4对

查看答案和解析>>

同步练习册答案