【题目】设圆
的圆心为
,直线l过点
且与x轴不重合,l交圆
于
两点,过点
作
的平行线交
于点
.
(1)证明
为定值,并写出点
的轨迹方程;
(2)设点
的轨迹为曲线
,直线
与曲线
交于
两点,点
为椭圆
上一点,若
是以
为底边的等腰三角形,求
面积的最小值.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,平面
平面
,
,
,
,
,
,
分别为
的中点.
![]()
(Ⅰ)证明:平面
∥平面
;
(Ⅱ)若
,
(1)求平面
与平面
所成锐二面角的余弦值;
(2)求点
到平面
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一半径为
的水轮,水轮圆心
距离水面2
,已知水轮每分钟转动(按逆时针方向)3圈,当水轮上点
从水中浮现时开始计时,即从图中点
开始计算时间.
![]()
(1)当
秒时点
离水面的高度_________;
(2)将点
距离水面的高度
(单位:
)表示为时间
(单位:
)的函数,则此函数表达式为_______________ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是矩形,
平面
,
,点
、
分别在线段
、
上,且
,其中
,连接
,延长
与
的延长线交于点
,连接
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)若
时,求二面角
的正弦值;
(Ⅲ)若直线
与平面
所成角的正弦值为
时,求
值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在下列四个几何体中,它们的三视图(主视图、左视图、俯视图)中有且仅有两个相同,而另一个不同的几何体是( )
(1)棱长为1的正方体
![]()
(2)底面直径和高均为1的圆柱
![]()
(3)底面直径和高均为1的圆锥
![]()
(4)底面边长为1、高为2的正四棱柱
![]()
A.(2)(3)(4)B.(1)(2)(3)
C.(1)(3)(4)D.(1)(2)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A. 1盏 B. 3盏 C. 5盏 D. 9盏
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(
为自然对数的底数).
(1)若对于任意实数
,
恒成立,试确定
的取值范围;
(2)当
时,函数
在
上是否存在极值?若存在,请求出这个极值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某单位共有职工1000人,其中男性700人,女性300人,为调查该单位职工每周平均体育运动时间的情况,采用分层抽样的方法,收集200位职工每周平均体育运动时间的样本数据(单位:小时).
![]()
(1)根据这200个样本数据,得到职工每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:
,
,
,
,
,
.估计该单位职工每周平均体育运动时间超过4小时的概率;
(2)估计该单位职工每周平均体育运动时间的平均数和中位数(保留两位小数);
(3)在样本数据中,有40位女职工的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有90%的把握认为“该单位职工的每周平均体育运动时间与性别有关”,
| 0.10 | 0.05 | 0.010 | 0.005 |
| 2.706 | 3.841 | 6.635 | 7.879 |
附:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com