18. [解析](1)![]()
时,点
在圆上.又![]()
,圆心
在直线直线
上,故
. ………………………..2分
(2)设
.
联立方程组,
![]()
,
.………………………………………………………. 4分
![]()
即![]()
又![]()
,………………. 6分
![]()
当
时,此式不成立,
从而
.…………………………. 9分
又
令![]()
令函数
当
时,![]()
从而
,……………………………… 11分
解此不等式,可得
或
.…………………… 13分
17.[解析]
(I) 共有
种结果····································································· 4分
(II) 若用
来表示两枚骰子向上的点数所构成的点的坐标,满足
的结果有:
,(3,1),(4,1)(5,1),(6,1)(3,2),(4,2)(5,2),(6,2)(4,3),
(5,3)(6,3),(5,4)(6,4),(6,5)共15种.·································· 8分
(III)满足
的概率是:P=
. ··········································· 13分
16.[解析](Ⅰ)由题意得
············································································ 2分
因为cosA≠0, ······················································································ 3分
所以tanA=1. ······················································································· 4分
(Ⅱ)由(Ⅰ)知tanA=1得
······································································ 5分
=
········································································· 6分
=
······························································· 7分
因为x
R,所以
.···································································· 8分
当
时,f(x)有最大值
,···························································· 10分
当sinx=-1时,f(x)有最小值-2,····························································· 11分
所以所求函数f(x)的值域是
······················································ 13分
(二)选做题(14-15题,考生只能从中选做一题)
14.(坐标系与参数方程选做题)[解析]
.将极坐标方程
和
分别化为普通方程
,
,然后就可解得答案
.
15.(几何证明选讲选做题)[解析]15.如图,由相交弦定理可知,![]()
![]()
由切割线定理可知![]()
(一)必做题(11-13题)
11.[解析]
, ,
从而数列
的前
项和为
.
12.[解析]20.由题意可知![]()
13.[解析]
. 由
,又由双曲线
的对称性可知
又双曲线的渐近线方程为
.又因为
.因为![]()
10.[解析]C.由
,考虑到斜率以及由x,y满足约束条件
所确定的可行域,数形结合,易得答案为C.
9.[解析]C.由题意“函数f(x)、f(x+2)均为偶函数”可知,![]()
![]()
![]()
![]()
的周期为
.从而![]()
![]()
![]()
从而选C.
8.[解析]B. 因为函数![]()
在区间
是增函数,又因
,所以
时,
![]()
![]()
![]()
从而
从而选B.
7.[解析]A.
.
6.[解析]A.随机取出2个小球得到的结果数有
种(提倡列举).取出的小球标注的数字之和为3或6的结果为
共3种,故所求答案为(A).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com