1. 设0<x<1,则a=2
,b=1+x, c=
中最大的一个是 ▲ .
070]解:(1)6.(2)8.·················································································· (3分)
(3)①当0
时,
. ··································· (5分)
②当3
时,
![]()
=
·································································································· (7分)
③当
时,设
与
交于点
.
(解法一)
过
作
则
为等边三角形.
![]()
![]()
![]()
.
.··············································································· (10分)
(解法二)
如右图,过点
作
于点
,
,于点![]()
过点
作![]()
交
延长线于点
.
![]()
又![]()
![]()
![]()
又![]()
![]()
![]()
![]()
·················································································· (10分)
069]解 (1)易求得点
的坐标为![]()
由题设可知
是方程
即
的两根,
所以
,所
·························· (1分)
如图3,∵⊙P与
轴的另一个交点为D,由于AB、CD是⊙P的两条相交弦,设它们的交点为点O,连结DB,∴△AOC∽△DOC,则
······· (2分)
由题意知点
在
轴的负半轴上,从而点D在
轴的正半轴上,
所以点D的坐标为(0,1)············································································ (3分)
(2)因为AB⊥CD, AB又恰好为⊙P的直径,则C、D关于点O对称,
所以点
的坐标为
,即
···························································· (4分)
又
,
所以
解得
······················ (6分)
067](1)解:∵直角梯形![]()
![]()
![]()
![]()
当
时,四边形![]()
为平行四边形.
由题意可知:![]()
![]()
![]()
![]()
当
时,四边形
为平行四边形.································································· 3分
(2)解:设
与
相切于点![]()
过点
作
垂足为![]()
直角梯形![]()
![]()
由题意可知:![]()
![]()
![]()
![]()
为
的直径,![]()
为
的切线
![]()
····················································· 5分
在
中,
,![]()
即:
,
,![]()
,因为
在
边运动的时间为
秒
而
,
(舍去),
当
秒时,
与
相切.································ 8分
[068]解:(1)如图4,过B作![]()
则![]()
过Q作![]()
则![]()
························································································· (2分)
要使四边形PABQ是等腰梯形,则
,
即![]()
![]()
或
(此时
是平行四边形,不合题意,舍去)························· (3分)
(2)当
时,![]()
。
··············································· (4分)
![]()
···················································· (5分)
![]()
··································································· (6分)
(3)①当
时,则![]()
···························································································· (7分)
②当
时,![]()
即
······················································ (8分)
③当
时,
········· (9分)
综上,当
时,△PQF是等腰三角形.·············· (10分)
066](1)由
得
,代入反比例函数
中,得![]()
∴反比例函数解析式为:
··············································································· 2分
解方程组
由
化简得:![]()
,
所以
·································································· 5分
(2)无论
点在
之间怎样滑动,
与
总能相似.因为
两点纵坐标相等,所以
轴.
又因为
轴,所以
为直角三角形.
同时
也是直角三角形,![]()
![]()
···························································································· 8分
(在理由中只要能说出
轴,
即可得分.)
065]解:(1)∵AB是⊙O的直径(已知)
∴∠ACB=90º(直径所对的圆周角是直角)
∵∠ABC=60º(已知)
∴∠BAC=180º-∠ACB-∠ABC= 30º(三角形的内角和等于180º)
∴AB=2BC=4cm(直角三角形中,30º锐角所对的直角边等于斜边的一半)
即⊙O的直径为4cm.
(2)如图10(1)CD切⊙O于点C,连结OC,则OC=OB=1/2·AB=2cm.
∴CD⊥CO(圆的切线垂直于经过切点的半径)
∴∠OCD=90º(垂直的定义) ∵∠BAC= 30º(已求)
∴∠COD=2∠BAC= 60º ∴∠D=180º-∠COD-∠OCD= 30º∴OD=2OC=4cm ∴BD=OD-OB=4-2=2(cm)
∴当BD长为2cm,CD与⊙O相切.
(3)根据题意得:
BE=(4-2t)cm,BF=tcm;
如图10(2)当EF⊥BC时,△BEF为直角三角形,此时△BEF∽△BAC
∴BE:BA=BF:BC即:(4-2t):4=t:2解得:t=1
如图10(3)当EF⊥BA时,△BEF为直角三角形,此时△BEF∽△BCA
∴BE:BC=BF:BA即:(4-2t):2=t:4解得:t=1.6
∴当t=1s或t=1.6s时,△BEF为直角三角形.
063](1)① 对称轴
······································································ (2分)
② 当
时,有
,解之,得
,![]()
∴ 点A的坐标为(
,0).·································································· (4分)
(2)满足条件的点P有3个,分别为(
,3),(2,3),(
,
).······· (7分)
(3)存在.当
时,
∴ 点C的坐标为(0,3)
∵ DE∥
轴,AO
3,EO
2,AE
1,CO
3
∴
∽
∴
即
∴ DE
1··········· (9分)
∴ ![]()
![]()
4
在OE上找点F,使OF![]()
,此时![]()
![]()
2,直线CF把四边形DEOC
分成面积相等的两部分,交抛物线于点M.························································ (10分)
设直线CM的解析式为
,它经过点
.则
· (11分)
解之,得
∴ 直线CM的解析式为
·························· (12分)
[064]解:(1)抛物线
与y轴的交于点B,令x=0得y=2.
∴B(0,2)
∵
∴A(-2,3)
(2)当点P是 AB的延长线与x轴交点时,
.
当点P在x轴上又异于AB的延长线与x轴的交点时,
在点P、A、B构成的三角形中,
.
综合上述:
(3)作直线AB交x轴于点P,由(2)可知:当PA-PB最大时,点P是所求的点 ····· 8分
作AH⊥OP于H.∵BO⊥OP,∴△BOP∽△AHP
∴
由(1)可知:AH=3、OH=2、OB=2,∴OP=4,故P(4,0)
062]解:实践应用(1)2;
.
;
.(2)
.
拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了
周.
又∵三角形的外角和是360°,
∴在三个顶点处,⊙O自转了
(周).
∴⊙O共自转了(
+1)周.
(2)
+1.
061]解(1)A(
,0),B(0,3)········································ 2分(每对一个给1分)
(2)满分3分.其中过F作出垂线1分,作出BF中垂线1分,找出圆心并画出⊙P给1分. (注:画垂线PF不用尺规作图的不扣分)
(3)过点P作PD⊥
轴于D,则PD=
,BD=
,··········· 6分
PB=PF=
,∵△BDP为直角三形,∴ ![]()
∴
,即![]()
即
∴
与
的函数关系为![]()
(4)存在
解法1:∵⊙P与
轴相切于点F,且与直线
相切于点B
∴
,∵
,∴![]()
∵AF=
, ∴
,∴
11分
把
代入
,得![]()
∴点P的坐标为(1,
)或(
9,15)12分
070]如图所示,菱形
的边长为6厘米,
.从初始时刻开始,点
、
同时从
点出发,点
以1厘米/秒的速度沿
的方向运动,点
以2厘米/秒的速度沿
的方向运动,当点
运动到
点时,
、
两点同时停止运动,设
、
运动的时间为
秒时,
与
重叠部分的面积为
平方厘米(这里规定:点和线段是面积为
的三角形),解答下列问题:
(1)点
、
从出发到相遇所用时间是
秒;
(2)点
、
从开始运动到停止的过程中,当
是等边三角形时
的值是 秒;
(3)求
与
之间的函数关系式.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com