0  257607  257615  257621  257625  257631  257633  257637  257643  257645  257651  257657  257661  257663  257667  257673  257675  257681  257685  257687  257691  257693  257697  257699  257701  257702  257703  257705  257706  257707  257709  257711  257715  257717  257721  257723  257727  257733  257735  257741  257745  257747  257751  257757  257763  257765  257771  257775  257777  257783  257787  257793  257801  447090 

1. 设0<x<1,则a=2,b=1+x, c=中最大的一个是  ▲  .

试题详情

070]解:(1)6.(2)8.·················································································· (3分)

(3)①当0时,

 

. ··································· (5分)

②当3时,

=·································································································· (7分)

③当时,设交于点

(解法一)

为等边三角形.

.··············································································· (10分)

(解法二)

如右图,过点于点,于点

过点延长线于点

·················································································· (10分)

试题详情

069]解  (1)易求得点的坐标为

由题设可知是方程 的两根,

所以,所·························· (1分)

如图3,∵⊙P轴的另一个交点为D,由于ABCD是⊙P的两条相交弦,设它们的交点为点O,连结DB,∴△AOC∽△DOC,则······· (2分)

由题意知点轴的负半轴上,从而点D轴的正半轴上,

所以点D的坐标为(0,1)············································································ (3分)

(2)因为AB⊥CD, AB又恰好为⊙P的直径,则CD关于点O对称,

所以点的坐标为,即···························································· (4分)

所以解得······················ (6分)

试题详情

067](1)解:∵直角梯形

时,四边形

为平行四边形.

由题意可知:

时,四边形为平行四边形.································································· 3分

(2)解:设相切于点

过点垂足为

直角梯形

由题意可知:

的直径,

的切线

····················································· 5分

中,

即:

因为边运动的时间为

(舍去),秒时,相切.································ 8分

[068]解:(1)如图4,过B

Q

························································································· (2分)

要使四边形PABQ是等腰梯形,则

(此时是平行四边形,不合题意,舍去)························· (3分)

(2)当时,

··············································· (4分)

···················································· (5分)

··································································· (6分)

(3)①当时,则

···························································································· (7分)

②当时,

······················································ (8分)

③当时, ········· (9分)

综上,当时,△PQF是等腰三角形.·············· (10分)

试题详情

066](1)由,代入反比例函数中,得

∴反比例函数解析式为:··············································································· 2分

解方程组化简得:

所以·································································· 5分

  (2)无论点在之间怎样滑动,总能相似.因为两点纵坐标相等,所以轴.

又因为轴,所以为直角三角形.

同时也是直角三角形,

···························································································· 8分

(在理由中只要能说出轴,即可得分.)

试题详情

065]解:(1)∵AB是⊙O的直径(已知)

        ∴∠ACB=90º(直径所对的圆周角是直角)

        ∵∠ABC=60º(已知)

        ∴∠BAC=180º-∠ACB-∠ABC= 30º(三角形的内角和等于180º)

        ∴AB=2BC=4cm(直角三角形中,30º锐角所对的直角边等于斜边的一半)

        即⊙O的直径为4cm.

(2)如图10(1)CD切⊙O于点C,连结OC,则OC=OB=1/2·AB=2cm.

∴CD⊥CO(圆的切线垂直于经过切点的半径)

∴∠OCD=90º(垂直的定义)     ∵∠BAC= 30º(已求)

∴∠COD=2∠BAC= 60º  ∴∠D=180º-∠COD-∠OCD= 30º∴OD=2OC=4cm      ∴BD=OD-OB=4-2=2(cm)

        ∴当BD长为2cm,CD与⊙O相切.

(3)根据题意得:

BE=(4-2t)cm,BF=tcm;

如图10(2)当EF⊥BC时,△BEF为直角三角形,此时△BEF∽△BAC

∴BE:BA=BF:BC即:(4-2t):4=t:2解得:t=1

如图10(3)当EF⊥BA时,△BEF为直角三角形,此时△BEF∽△BCA

∴BE:BC=BF:BA即:(4-2t):2=t:4解得:t=1.6

∴当t=1s或t=1.6s时,△BEF为直角三角形.

试题详情

063](1)① 对称轴······································································ (2分)

② 当时,有解之,得

∴ 点A的坐标为(,0).·································································· (4分)

(2)满足条件的点P有3个,分别为(,3),(2,3),().······· (7分)

(3)存在.当时,  ∴ 点C的坐标为(0,3)

DE轴,AO3,EO2,AE1,CO3

  ∴   即  ∴ DE1··········· (9分)

4

OE上找点F,使OF,此时2,直线CF把四边形DEOC

分成面积相等的两部分,交抛物线于点M.························································ (10分)

设直线CM的解析式为,它经过点.则 · (11分)

解之,得   ∴ 直线CM的解析式为 ·························· (12分)

[064]解:(1)抛物线y轴的交于点B,令x=0得y=2.

B(0,2) 

A(-2,3)

(2)当点PAB的延长线与x轴交点时,

当点Px轴上又异于AB的延长线与x轴的交点时,

在点PAB构成的三角形中,

综合上述:

(3)作直线ABx轴于点P,由(2)可知:当PA-PB最大时,点P是所求的点 ····· 8分

AHOPH.∵BOOP,∴△BOP∽△AHP

   ∴  由(1)可知:AH=3、OH=2、OB=2,∴OP=4,故P(4,0) 

试题详情

062]解:实践应用(1)2;.(2)

拓展联想(1)∵△ABC的周长为l,∴⊙O在三边上自转了周.

又∵三角形的外角和是360°,

∴在三个顶点处,⊙O自转了(周).                         

∴⊙O共自转了(+1)周.

(2)+1.

试题详情

061]解(1)A(,0),B(0,3)········································ 2分(每对一个给1分)

(2)满分3分.其中过F作出垂线1分,作出BF中垂线1分,找出圆心并画出⊙P给1分.   (注:画垂线PF不用尺规作图的不扣分)

(3)过点PPD轴于D,则PD=BD=,··········· 6分

PB=PF=,∵△BDP为直角三形,∴

的函数关系为

(4)存在

解法1:∵⊙P轴相切于点F,且与直线相切于点B

AF=  ,  ∴ 11分

代入,得

∴点P的坐标为(1,)或(9,15)12分

试题详情

070]如图所示,菱形的边长为6厘米,.从初始时刻开始,点同时从点出发,点以1厘米/秒的速度沿的方向运动,点以2厘米/秒的速度沿的方向运动,当点运动到点时,两点同时停止运动,设运动的时间为秒时,重叠部分的面积为平方厘米(这里规定:点和线段是面积为的三角形),解答下列问题:

(1)点从出发到相遇所用时间是     秒;

(2)点从开始运动到停止的过程中,当是等边三角形时的值是     秒;

(3)求之间的函数关系式.

 

试题详情


同步练习册答案