0  258218  258226  258232  258236  258242  258244  258248  258254  258256  258262  258268  258272  258274  258278  258284  258286  258292  258296  258298  258302  258304  258308  258310  258312  258313  258314  258316  258317  258318  258320  258322  258326  258328  258332  258334  258338  258344  258346  258352  258356  258358  258362  258368  258374  258376  258382  258386  258388  258394  258398  258404  258412  447090 

2.下列各组词语中,没有错别字的一组是                  (   )

   A.委曲      通讯社       寥若晨星      事实盛于雄辩

   B.杀戳      综合症       娇揉造作      可望而不可即

   C.装潢      飨读者       毁家纾难      化干戈为玉帛

   D.和蔼      编者按       雪中送碳      水至清则无鱼

试题详情

1.下列各项中,每对词语加点字读音完全不同的一组是            (   )

   A.辟谣/精辟    犄角/掎角之势   丞待解决/岌岌可危

   B.殉职/徇私    蹊跷/独辟蹊径   量入为出/质量并重

   C.暗哑/谙熟    角色/崭露头角   载入史册/载人航天

   D.剽悍/骠勇    混蛋/浑水摸鱼   重在参与/与人为善

试题详情

010]解:(1)根据题意,得···· 2分

解得抛物线对应的函数表达式为.  3分

(2)存在.

中,令,得

,得

顶点.········································································ 5分

容易求得直线的表达式是

中,令,得

.···························································································· 6分

中,令,得

四边形为平行四边形,此时.································· 8分

(3)是等腰直角三角形.

理由:在中,令,得,令,得

直线与坐标轴的交点是

.·················································································· 9分

.··················································· 10分

由图知.·········································· 11分

,且是等腰直角三角形.································· 12分

(4)当点是直线上任意一点时,(3)中的结论成立.  14分

试题详情

009]解:(1)①轴,轴,

四边形为矩形.

轴,轴,

四边形为矩形.

轴,轴,

四边形均为矩形.············ 1分

 

.······························································································ 2分

②由(1)知

.············································································································ 4分

.································································································ 5分

.············································································································· 6分

轴,

四边形是平行四边形.

.············································································································· 7分

同理

.············································································································· 8分

(2)仍然相等.························································································· 9分

.································· 10分

.············································································································ 11分

轴,

四边形是平行四边形.

同理

.·········································································································· 12分

试题详情

008]证明:(1)∵∠ABC=90°,BD⊥EC,

∴∠1与∠3互余,∠2与∠3互余,

∴∠1=∠2…………………………………………………1分

∵∠ABC=∠DAB=90°,AB=AC

∴△BAD≌△CBE…………………………………………2分

∴AD=BE……………………………………………………3分

(2)∵E是AB中点,

∴EB=EA由(1)AD=BE得:AE=AD……………………………5分

∵AD∥BC∴∠7=∠ACB=45°∵∠6=45°∴∠6=∠7

由等腰三角形的性质,得:EM=MD,AM⊥DE。

即,AC是线段ED的垂直平分线。……………………7分

(3)△DBC是等腰三角(CD=BD)……………………8分

理由如下:

由(2)得:CD=CE由(1)得:CE=BD∴CD=BD

∴△DBC是等腰三角形。……………………………10分

试题详情

006]解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB=,得AB=

 设A(a,0),B(b,0)AB=b-a==,解得p=,但p<0,所以p=

      所以解析式为:

(2)令y=0,解方程得,得,所以A(,0),B(2,0),在直角三角形AOC中可求得AC=,同样可求得BC=,显然AC2+BC2=AB2,得△ABC是直角三角形。AB为斜边,所以外接圆的直径为AB=,所以

(3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组得D(,9)

  ②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把 A(,0)代入得AD解析式为y=0.5x+0.25,解方程组得D()   综上,所以存在两点:(,9)或()。

 

试题详情

004](1)解:由点坐标为

点坐标为(2分)

解得点的坐标为(3分)

(4分)

(2)解:∵点上且点坐标为(5分)又∵点上且点坐标为(6分)

(7分)

(3)解法一:时,如图1,矩形重叠部分为五边形(时,为四边形).过,则

 

(10分)

[005](1)如图1,过点于点·················· 1分

的中点,

中,············· 2分

即点的距离为··········································· 3分

(2)①当点在线段上运动时,的形状不发生改变.

同理······························································································· 4分

如图2,过点,∵

中,

的周长=············································· 6分

②当点在线段上运动时,的形状发生改变,但恒为等边三角形.

时,如图3,作,则

类似①,

································································································ 7分

是等边三角形,∴

此时,········································· 8分

   当时,如图4,这时

此时,

时,如图5,

因此点重合,为直角三角形.

此时,

综上所述,当或4或时,为等腰三角形.

试题详情

003]解.(1)点A的坐标为(4,8)         …………………1分

将A  (4,8)、C(8,0)两点坐标分别代入y=ax2+bx

       8=16a+4b

     得             

     0=64a+8b

     解 得a=-,b=4

∴抛物线的解析式为:y=-x2+4x      …………………3分

(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=

PE=AP=t.PB=8-t

∴点E的坐标为(4+t,8-t).

∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8. …………………5分

∴EG=-t2+8-(8-t) =-t2+t.

∵-<0,∴当t=4时,线段EG最长为2.       …………………7分

②共有三个时刻.                  …………………8分

t1= t2=t3= .          …………………11分

试题详情

002]解:(1)1,

(2)作QFAC于点F,如图3, AQ = CP= t,∴

由△AQF∽△ABC

.∴. ∴

(3)能.

  ①当DEQB时,如图4.

  ∵DEPQ,∴PQQB,四边形QBED是直角梯形.

   此时∠AQP=90°.

由△APQ ∽△ABC,得

. 解得

②如图5,当PQBC时,DEBC,四边形QBED是直角梯形.

此时∠APQ =90°.

由△AQP ∽△ABC,得

. 解得.                                                

(4)

[注:①点PCA运动,DE经过点C

方法一、连接QC,作QGBC于点G,如图6.

,得,解得

方法二、由,得,进而可得

,得,∴.∴

②点PAC运动,DE经过点C,如图7.

]

试题详情


同步练习册答案