2.下列各组词语中,没有错别字的一组是 ( )
A.委曲 通讯社 寥若晨星 事实盛于雄辩
B.杀戳 综合症 娇揉造作 可望而不可即
C.装潢 飨读者 毁家纾难 化干戈为玉帛
D.和蔼 编者按 雪中送碳 水至清则无鱼
1.下列各项中,每对词语加点字读音完全不同的一组是 ( )
A.辟谣/精辟 犄角/掎角之势 丞待解决/岌岌可危
B.殉职/徇私 蹊跷/独辟蹊径 量入为出/质量并重
C.暗哑/谙熟 角色/崭露头角 载入史册/载人航天
D.剽悍/骠勇 混蛋/浑水摸鱼 重在参与/与人为善
010]
解:(1)根据题意,得
···· 2分
解得![]()
抛物线对应的函数表达式为
. 3分
(2)存在.
在
中,令
,得
.
令
,得
,
.
,
,
.
又
,
顶点
.········································································ 5分
容易求得直线
的表达式是
.
在
中,令
,得
.
,
.···························································································· 6分
在
中,令
,得
.
.
,
四边形
为平行四边形,此时
.································· 8分
(3)
是等腰直角三角形.
理由:在
中,令
,得
,令
,得
.
直线
与坐标轴的交点是
,
.
,
.·················································································· 9分
又
点
,
.
.··················································· 10分
由图知
,
.·········································· 11分
,且
.
是等腰直角三角形.································· 12分
(4)当点
是直线
上任意一点时,(3)中的结论成立. 14分
009]
解:(1)①
轴,
轴,
四边形
为矩形.
![]()
轴,
轴,
四边形
为矩形.
轴,
轴,
四边形
均为矩形.············ 1分
![]()
,
![]()
![]()
![]()
,
![]()
.
![]()
.
![]()
,
,
![]()
.······························································································ 2分
②由(1)知
.
![]()
.
![]()
.············································································································ 4分
![]()
,
![]()
.································································································ 5分
![]()
.
![]()
.············································································································· 6分
![]()
轴,
四边形
是平行四边形.
![]()
.············································································································· 7分
同理
.
.············································································································· 8分
(2)
与
仍然相等.························································································· 9分
![]()
,
![]()
,
又![]()
,
![]()
.································· 10分
![]()
.
![]()
.
![]()
,
![]()
.
![]()
.
![]()
.············································································································ 11分
![]()
轴,
四边形
是平行四边形.
![]()
.
同理
.
![]()
.·········································································································· 12分
008]证明:(1)∵∠ABC=90°,BD⊥EC,
∴∠1与∠3互余,∠2与∠3互余,
∴∠1=∠2…………………………………………………1分
∵∠ABC=∠DAB=90°,AB=AC
∴△BAD≌△CBE…………………………………………2分
∴AD=BE……………………………………………………3分
(2)∵E是AB中点,
∴EB=EA由(1)AD=BE得:AE=AD……………………………5分
∵AD∥BC∴∠7=∠ACB=45°∵∠6=45°∴∠6=∠7
由等腰三角形的性质,得:EM=MD,AM⊥DE。
即,AC是线段ED的垂直平分线。……………………7分
(3)△DBC是等腰三角(CD=BD)……………………8分
理由如下:
由(2)得:CD=CE由(1)得:CE=BD∴CD=BD
∴△DBC是等腰三角形。……………………………10分
007]
![]()
006]解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB=
,得AB=
,
设A(a,0),B(b,0)AB=b-a=![]()
=
,解得p=
,但p<0,所以p=
。
所以解析式为:![]()
(2)令y=0,解方程得
,得
,所以A(
,0),B(2,0),在直角三角形AOC中可求得AC=
,同样可求得BC=
,显然AC2+BC2=AB2,得△ABC是直角三角形。AB为斜边,所以外接圆的直径为AB=
,所以
。
(3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组
得D(
,9)
②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把 A(
,0)代入得AD解析式为y=0.5x+0.25,解方程组
得D(
) 综上,所以存在两点:(
,9)或(
)。
004](1)解:由
得
点坐标为![]()
由
得
点坐标为
∴
(2分)
由
解得
∴
点的坐标为
(3分)
∴
(4分)
(2)解:∵点
在
上且
∴
点坐标为
(5分)又∵点
在
上且
∴
点坐标为
(6分)
∴
(7分)
(3)解法一:
当
时,如图1,矩形
与
重叠部分为五边形
(
时,为四边形
).过
作
于
,则![]()
∴
即
∴![]()
![]()
∴![]()
即
(10分)
[005](1)如图1,过点
作
于点
·················· 1分
∵
为
的中点,
∴![]()
在
中,
∴
············· 2分
∴![]()
即点
到
的距离为
··········································· 3分
(2)①当点
在线段
上运动时,
的形状不发生改变.
∵
∴![]()
∵
∴
,![]()
同理
······························································································· 4分
如图2,过点
作
于
,∵![]()
∴![]()
∴![]()
∴![]()
则![]()
在
中,![]()
∴
的周长=
············································· 6分
②当点
在线段
上运动时,
的形状发生改变,但
恒为等边三角形.
当
时,如图3,作
于
,则![]()
类似①,![]()
∴
································································································ 7分
∵
是等边三角形,∴![]()
此时,
········································· 8分
![]()
当
时,如图4,这时![]()
此时,![]()
当
时,如图5,![]()
则
又![]()
∴![]()
因此点
与
重合,
为直角三角形.
∴![]()
此时,![]()
综上所述,当
或4或
时,
为等腰三角形.
003]解.(1)点A的坐标为(4,8) …………………1分
将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx
8=16a+4b
得
0=64a+8b
解 得a=-
,b=4
∴抛物线的解析式为:y=-
x2+4x …………………3分
(2)①在Rt△APE和Rt△ABC中,tan∠PAE=
=
,即
=![]()
∴PE=
AP=
t.PB=8-t.
∴点E的坐标为(4+
t,8-t).
∴点G的纵坐标为:-
(4+
t)2+4(4+
t)=-
t2+8. …………………5分
∴EG=-
t2+8-(8-t) =-
t2+t.
∵-
<0,∴当t=4时,线段EG最长为2.
…………………7分
②共有三个时刻. …………………8分
t1=
, t2=
,t3=
.
…………………11分
002]解:(1)1,
;
(2)作QF⊥AC于点F,如图3, AQ = CP= t,∴
.
由△AQF∽△ABC,
,
得
.∴
. ∴
,
即
.
(3)能.
①当DE∥QB时,如图4.
∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.
此时∠AQP=90°.
由△APQ ∽△ABC,得
,
即
. 解得
.
②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.
此时∠APQ =90°.
由△AQP ∽△ABC,得
,
即
. 解得
.
(4)
或
.
[注:①点P由C向A运动,DE经过点C.
方法一、连接QC,作QG⊥BC于点G,如图6.
,![]()
.
由
,得
,解得
.
方法二、由
,得
,进而可得
,得
,∴
.∴
.
②点P由A向C运动,DE经过点C,如图7.
,
]
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com