⑴ B ⑵ C ⑶ D ⑷ A
⑸ C
⑹ B ⑺ A ⑻ C
(15)(本小题共13分)
已知函数![]()
(Ⅰ)求
的值;
(Ⅱ)求
的最大值和最小值
(16)(本小题共13分)
已知
为等差数列,且
,
。
(Ⅰ)求
的通项公式;
(Ⅱ)若等差数列
满足
,
,求
的前n项和公式
(17)(本小题共13分)
如图,正方形ABCD和四边形ACEF所在的平面互相垂直。
EF//AC,AB=
,CE=EF=1
(Ⅰ)求证:AF//平面BDE;
(Ⅱ)求证:CF⊥平面BDF;
(18) (本小题共14分)
设定函数
,且方程
的两个根分别为1,4。
(Ⅰ)当a=3且曲线
过原点时,求
的解析式;
(Ⅱ)若
在
无极值点,求a的取值范围。
(19)(本小题共14分)
已知椭圆C的左、右焦点坐标分别是
,
,离心率是
,直线
椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P。
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标;
(Ⅲ)设Q(x,y)是圆P上的动点,当
变化时,求y的最大值。
(20)(本小题共13分)
已知集合
对于
,
,定义A与B的差为
![]()
A与B之间的距离为![]()
(Ⅰ)当n=5时,设
,求
,
;
(Ⅱ)证明:
,且
;
(Ⅲ) 证明:
三个数中至少有一
个是偶数
绝密«使用完毕前
2010年普通高等学校招生全国统一考试
数学(文)(北京卷)
(9)已知函数
右图表示的是给
定x的值,求其对应的函数值y的程序框图,
①处应填写 ;②处应填写 。
(10)在
中。若
,
,
,则a= 。
(11)若点p(m,3)到直线
的距离为4,且点p在不等式
<3表示的平面区域内,则m=
。
(12)从某小学随机抽取100名同学,将他们身高
(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a= 。若要从身高在
[120,130﹚,[130,140﹚,[140,150]三组内的
学生中,用分层抽样的方法选取18人参加一项活动
,则从身高在[140,150]内的学生中选取的人数
应为 。
(13)已知双曲线
的离心率为2,焦点与椭圆
的焦点相同,那么双曲线的焦点坐标为
;渐近线方程为
。
![]()
(14)如图放置的边长为1的正方形PABC沿x轴滚动。
设顶点p(x,y)的纵坐标与横坐标的函数关系是
,则
的最小正周期为 ;
在其两个相邻零点间的图像与x轴
所围区域的面积为 。
说明:“正方形PABC沿x轴滚动”包含沿x轴正方向和沿x轴负方向滚动。沿x轴正方向滚动是指以顶点
A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续,类似地,正方形PABC可以沿着x轴负方向滚动。
⑴ 集合
,则
=
(A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3}
⑵在复平面内,复数6+5i,
-2+3i 对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是
(A)4+8i (B)8+2i (C)2+4i (D)4+i
⑶从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是
(A)
(B)
(C)
(D)![]()
⑷若a,b是非零向量,且
,
,则函数
是
(A)一次函数且是奇函数 (B)一次函数但不是奇函数
(C)二次函数且是偶函数 (D)二次函数但不是偶函数
(5)一个长方体去掉一个小长方体,所得几何体的
正视图与侧(左)视图分别如右图所示,则该集合体
的俯视图为:
![]()
![]()
(6)给定函数①
,②
,③
,④
,期中在区间(0,1)上单调递减的函数序号是
(A)①② (B)②③ (C)③④ (D)①④
(7)某班设计了一个八边形的班徽(如图),它由腰长为1,
顶角为
的四个等腰三角形,及其底边构成的正方形所组成,
该八边形的面积为
(A)
;
(B)![]()
(C)
(D)![]()
(8)如图,正方体
的棱长为2,
动点E、F在棱
上。点Q是CD的中点,动点
P在棱AD上,若EF=1,DP=x,
E=y(x,y大于零),
则三棱锥P-EFQ的体积:
(A)与x,y都有关; (B)与x,y都无关;
(C)与x有关,与y无关; (D)与y有关,与x无关;
第Ⅱ卷(共110分)
![]()
(17)(本小题满分10分)
记等差数列{an}的前n项和为S,设Sx=12,且2a1,a2,a3+1成等比数列,求Sn.
(18)(本小题满分12分)
已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.
(19)(本小题满分12分)
投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用:若两位初审专家都未予通过,则不予录用:若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.
(Ⅰ)求投到该杂志的1篇稿件被录用的概率;
(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.
(20)(本小题满分12分)
如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DC-C的大小. ![]()
(21)(本小题满分12分)
已知函数f(x)=3ax4-2(3a+2)x2+4x.
(Ⅰ)当a=
时,求f(x)的极值;
(Ⅱ)若f(x)在(-1,1)上是增函数,求a的取值范围.
(22)(本小题满分12分)
已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交为A、B两点,点A关于x轴的对称点为D.
(Ⅰ)证明:点F在直线BD上;
(Ⅱ)设
,求△BDK的内切圆M的方程.
(13)不等式
>0的解集是
.
(14)已知
为第一象限的角,sin
=
,则tan
=
.
(15)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)
(16)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且
=2
,则C的离心率为
.
(1)cos300°=
(A)
(B)
(C)
(D)![]()
(2)设全集U=(1,2,3,4,5),集合M=(1,4),N=(1,3,5),则N
(C,M)
(A)(1,3) (B)(1,5) (C)(3,5) (D)(4,5)
(3)若变量x、y满足约束条件
则z=x-2y的最大值为
(A)4 (B)3 (C)2 (D)1
(4)已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6=
(A)5
(B)7 (C)6 (D)4
![]()
(5)(1-x)2(1-
)3的展开式中x2的系数是
(A)-6 (B)-3 (C)0 (D)3
(6)直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于
(A)30° (B)45° (C)60° (D)90°
(7)已知函数f(x)=
.若a≠b,且f(a)=f(b),则a+b的取值范围是
(A)(1,+∞) (B)[1,+∞] (C)(2,+∞) (D)[2,+∞)
(8)已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则
·
=
(A)2 (B)4 (C)6 (D)8
(9)正方体ABCD-A1BCD1中,BB1与平面ACD1所成角的余弦值为
(A)
(B)
(C)
(D)
![]()
(10)设a=log3,2,b=ln2,c=
,则
(A)a<b<c (B)b<c<a (C)c<a<b (D)c<b<a
(11)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么
·
的最小值为
(A)-4+
(B)-3+
(C)-4+2
(D)-3+2![]()
(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为
(A)
(B)
(C)
(D)
![]()
2010年普通高等学校招生全国统一考试
文科数学(必修+选修Ⅰ)
第Ⅱ卷
22.(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分。
若实数
、
、
满足![]()
,则称
比
接近
.
(1)若
比3接近0,求
的取值
范围;
(2)对任意两个不相等的正数
、
,证明:
比
接近
;
(3)已知函数
的定义域
.任取
,
等于
和
中接近0的那个值.写出函数
的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
23(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
已知椭圆
的方程为
,
、
和
为
的三个顶点.
(1)若点
满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)设点
在椭圆
内且不在
轴上,如何构作过
中点
的直线
,使得
与椭圆
的两个交点
、
满足
?令
,
,点
的坐标是(-8,-1),若椭圆
上的点
、
满足
,求点
、
的坐标.
21.(本题满分14分)本题共有2个
小题,第一个小题满分6分,第2个小题满分8分。
已知数列
的前![]()
项和为
,且
,![]()
(1)证明:
是等比数列;
(2)求数列
的通项公式,并求出使得
成立的最小正整数
.
20.(本大题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分.
如图所示,为了制作一个圆柱形灯笼,先要制作4个全等的矩形骨架,总计耗用9.6米铁丝,再用
平方米塑料片制
成圆柱的侧面和下底面(不安装上底面).
(1)当圆柱底面半径
取何值时,
取得最大值?并求出该
最大值(结果精确到0.01平方米);
(2)若要制作一个如图放置的,底面半径为0.3米的灯笼,请作出
用于灯
笼的三视图(作图时,不需考虑骨架等因素).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com