10.(2010年高考江苏卷试题16)(本小题满分14分)
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。
(1)
求证:PC⊥BC;
(2)求点A到平面PBC的距离。
[解析] 本小题主要考查直线与平面、平面与平面的位置关系,考查几何体的体积,考查空间想象能力、推理论证能力和运算能力。满分14分。
(1)证明:因为PD⊥平面ABCD,BC
平面ABCD,所以PD⊥BC。
由∠BCD=900,得CD⊥BC,
又PD
DC=D,PD、DC
平面PCD,
所以BC⊥平面PCD。
因为PC
平面PCD,故PC⊥BC。
(2)(方法一)分别取AB、PC的中点E、F,连DE、DF,则:
易证DE∥CB,DE∥平面PBC,点D、E到平面PBC的距离相等。
又点A到平面PBC的距离等于E到平面PBC的距离的2倍。
由(1)知:BC⊥平面PCD,所以平面PBC⊥平面PCD于PC,
因为PD=DC,PF=FC,所以DF⊥PC,所以DF⊥平面PBC于F。
易知DF=
,故点A到平面PBC的距离等于
。
(方法二)体积法:连结AC。设点A到平面PBC的距离为h。
因为AB∥DC,∠BCD=900,所以∠ABC=900。
从而AB=2,BC=1,得
的面积
。
由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积
。
因为PD⊥平面ABCD,DC
平面ABCD,所以PD⊥DC。
又PD=DC=1,所以
。
由PC⊥BC,BC=1,得
的面积
。
由
,
,得
,
故点A到平面PBC的距离等于
。
9.(2010年高考四川卷理科18)(本小题满分12分)![]()
![]()
w_w w. k#s5_
已知正方体ABCD-A'B'C'D'的棱长为1,点M是棱AA'的中点,点O是对角线BD'的中点.
(Ⅰ)求证:OM为异面直线AA'和BD'的公垂线;
![]()
(Ⅱ)求二面角M-BC'-B'的大小;
(Ⅲ)求三棱锥M-OBC的体积.
![]()
![]()
![]()
![]()
8. ( 2010年高考全国卷I理科19)(本小题满分12分)(注意:在试题卷上作答无效)
如图,四棱锥S-ABCD中,SD
底面ABCD,AB//DC,AD
DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC
平面SBC .
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A-DE-C的大小 .
[命题意图]本小题主要考查空间直线与直线、直线与平面、平面与平面的位置关系,二面角等基础知识,考查空间想象能力、推理论证能力和运算能力.
(19) [解析]解法一:
(Ⅰ)连接BD,取DC的中点G,连接BG,
由此知
即
为直角三角形,故
.
又
,
所以,
.
作![]()
,
![]()
(Ⅱ) 由
知
.
故
为等腰三角形.
取
中点F,连接
,则
.
连接
,则
.
所
以,
是二面角
的平面角.
连接AG,A
G=
,
,
![]()
,
所以,二面角
的大小为120°.
解法二:
以D为坐标原点,射线
为
轴的正半轴,建立如图所示的直角坐标系
,
![]()
由
,得
,![]()
故
.
令
,则
.
![]()
7.(2010年高考广东卷理科18)(本小题满分14分)
如图5,
是半径为a的半圆,AC为直径,点E为
的中点,点B和点C为线段AD的三等分点.平面AEC外一点F满足
,FE=
a .
![]()
![]()
图5
(1)证明:EB⊥FD;
(2)已知点Q,R分别为线段FE,FB上的点,使得
,求平面
与平面
所成二面角的正弦值.
[解析]
![]()
(2)设平面
与平面RQD的交线为
.
由BQ=
FE,FR=
FB知,
.
而
平面
,∴
平面
,
而平面![]()
平面
=
,
∴
.
由(1)知,![]()
平面
,∴![]()
平面
,
而
平面
,![]()
平面
,
∴
,
∴
是平面
与平面
所成二面角的平面角.
在
中,
,
,
.
![]()
.
故平面
与平面![]()
所成二面角的正弦值是
.
6.
(2010年高考安徽卷理科18)(本小题满分12分)
如图,在多面体
中,四边形
是正方形,
∥
,
,
,
,
,
为
的中点。
![]()
(Ⅰ)求证:
∥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求二面角
的大小。
![]()
![]()
![]()
5. (2010年高考湖南卷理科18)(本小题满
分12分)
如图5所示,在正方体ABCD-A1B1C1D1中,E是棱DD
1的中点。
(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;
(Ⅱ)在棱C1D1上是否存在一点F,使B1F//平面A1BE?证明你的结论。
[解析]
![]()
所以
,取
n
.
设F是棱C1D1上的点,则F(t,1,1)(0≤t≤1),又B1(1,0,1),所以
![]()
n![]()
![]()
这说明在在棱C1D1上是否存在一点F(
),使B1F//平面A1BE
解法2 如图(a)所示,取AA1的中点M,连结EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM//AD。
又在正方体ABCD-A1B1C1D1中。AD⊥平面ABB1A1,所以EM⊥ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,∠EBM直线BE与平面ABB1A1所成的角.
设正方体的棱长为2,则EM=AD=2,BE=
,于是
在RT△BEM中,![]()
4. (2010年高考数学湖北卷理科18)(本小题满分12分)
如图, 在四面体ABOC中,OC⊥OA,
OC⊥OB,∠A
OB=120°,且OA=OB=OC=1.
(Ⅰ) 设P为AC的中点.证明:在AB上存在一点Q,使PQ⊥OA,并计算=
的值;
(Ⅱ) 求二面角O-AC-B的平面角的余弦值. ![]()
![]()
![]()
![]()
3. (2010年高考天津卷理科19) (本小题满分12分)
如图,在长方体
中,
分别是棱
,
上的点,
,
。
(Ⅰ)求异面直线
与
所成角的余弦值:
(Ⅱ)证明
⊥平面
:(Ⅲ) 求二面角
的正弦值。
[命题意图]本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力。
[解析]方法一:如图所示,建立空间直角坐标系,
点A为坐标原点,设
,依题意得
,
,
,![]()
(1) 解:易得
,![]()
于是![]()
所以异面直线
与
所成角的余弦值为![]()
(2) 证明:已知
,
,![]()
于是
·
=0,
·
=0.因此,
,
,又![]()
所以
平面![]()
(3)解:设平面
的法向量
,则
,即![]()
不妨令X=1,可得
。由(2)可知,
为平面
的一个法向量。
于是
,从而![]()
所以二面角
的正弦值为![]()
方法二:(1)解:设AB=1,可得AD=2,AA1=4,CF=1.CE=![]()
链接B1C,BC1,设B1C与BC1交于点M,易知A1D∥B1C,由
,可知EF∥BC1.故
是异面直线EF与A1D所成的角,易知BM=CM=
,所以
,所以异面直线FE与A1D所成角的余弦值为![]()
(2)证明:连接AC,设AC与DE交点N 因为
,所以
,从而
,又由于
,所以
,故AC⊥DE,又因为CC1⊥DE且
,所以DE⊥平面ACF,从而AF⊥DE.
连接BF,同理可证B1C⊥平面ABF,从而AF⊥B1C,所以AF⊥A1D因为
,所以AF⊥平面A1ED
(3)解:连接A1N.FN,由(2)可知DE⊥平面ACF,又NF
平面ACF, A1N
平面ACF,所以DE⊥NF,DE⊥A1N,故
为二面角A1-ED-F的平面角
易知
,所以
,又
所以
,在![]()
![]()
连接A1C1,A1F 在![]()
。所以![]()
所以二面角A1-DE-F正弦值为
。
2.(2010年高考福建卷理科18)(本小题满分13分)
如图,圆柱
内有一个三棱柱
,三棱柱的底面为圆柱底面的内接三角形,且AB是圆O直径。
(Ⅰ)证明:平面
平面
;
(Ⅱ)设AB=
,在圆柱
内随机选取一点,记该点取自于三棱柱
内的概率为
。
(i)当点C在圆周上运动时,求
的最大值;
(ii)记平面
与平面
所成的角为![]()
,当
取最大值时,求
的值。
[命题意图]本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,以及几何体的体积、几何概型等基础知识,考查空间想象能力、运算求解能力、推理论证能力,考查数形结合思想、化归与转化思想、必然与或然思想。
[解析](Ⅰ)因为![]()
平面ABC,
平面ABC,所以![]()
![]()
,
因为AB是圆O直径,所以![]()
![]()
,又![]()
,所以![]()
平面
,
而
平面
,所以平面
平面
。
(Ⅱ)(i)设圆柱的底面半径为
,则AB=
,故三棱柱
的体积为
=
,又因为
,
所以
=
,当且仅当
时等号成立,
从而
,而圆柱的体积
,
故
=
当且仅当
,即
时等号成立,
所以
的最大值是
。
(ii)由(i)可知,
取最大值时,
,于是以O为坐标原点,建立空间直角坐标系
(如图),则C(r,0,0),B(0,r,0),
(0,r,2r),
因为![]()
平面
,所以
是平面
的一个法向量,
设平面
的法向量
,由
,故
,
取
得平面
的一个法向量为
,因为
,
所以
。
1.
(2010年高考山东卷理科19)(本小题满分12分)
如图,在五棱锥P-ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,
ABC=45°,AB=2
,BC=2AE=4,三角形PAB是等腰三角形.
(Ⅰ)求证
:平面PCD⊥平面PAC;
(Ⅱ)求直线PB与平面PCD所成角的大小;
(Ⅲ)求四棱锥
P-ACDE的体积.
[解析](Ⅰ)证明:因为
ABC=45°,AB=2
,BC=4,所以在
中,由余弦定理得:
,解得
,
所以
,即
,又PA⊥平面ABCDE,所以PA⊥
,
又PA
,所以
,又AB∥CD,所以
,又因为
,所以平面PCD⊥平面PAC;
(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作
于H,则
,又AB∥CD,AB
平面
内,所以AB平行于平面
,所以点A到平面
的距离等于点B到平面
的距离,过点B作BO⊥平面
于点O,则
为所求角,且
,又容易求得
,所以
,即
=
,所以直线PB与平面PCD所成角的大小为
;
(Ⅲ)由(Ⅰ)知
,所以
,又AC∥ED,所以四边形ACDE是直角梯形,又容易求得
,AC=
,所以四边形ACDE的面积为
,所以
四棱锥
P-ACDE的体积为
=
。
[命题意图]本题考查了空间几何体的的线面与面面垂直、线面角的求解以及几何体的体积计算问题,考查了同学们的空间想象能力以及空间思维能力。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com