0.8
0.3
(1)在A、B两个项目上各投资100万元,Y1和Y2分别表示投资项目A和B所获得的利润,求方差DY1、DY2;
(2)将x(0≤x≤100)万元投资A项目,100-x万元投资B项目,f(x)表示投资A项目所得利润的方差与投资B项目所得利润的方差的和。求f(x)的最小值,并指出x为何值时,f(x)取到最小值。 (注:D(aX + b) = a2DX)
【试题解析】 (I)由题设可知, Y1和Y2的分布列分别为
Y 1
5
10
P
0.5
0.2
0.2
P
0.8
20.(本小题满分12分)
(注意:在试题卷上作答无效)
A、B两个投资项目的利润率分别为随机变量X1和X2。根据市场分析,X1和X2的分布列分别为
X1
5%
10%
X2
2%
8%
12%
P
【备考提示】要熟练掌握导数的三大应用:①求斜率:在曲线的某点有切线,则求导后把横坐标代进去,则为其切线的斜率;②有关极值:就是某处有极值,则把它代入其导数,则为
;③单调性的判断:
,
单调递增;
,
单调递减,和一些常见的导数的求法. 要熟练一些函数的单调性的判断方法有,作差法,作商法,导数法;对于含参范围问题,解决方法有,当参数为一次时,可直接解出通过均值不等式求最值把其求出;当为二次时,可用判别式法或导数法等求.而此种题型函数与方程仍是高考的必考,以函数为背景、导数为工具,以分析、探求、转化函数的有关性质为设问方式,重点考查函数的基本性质,导数的应用,以及函数与方程、分类与整合等数学思想.其中试题灵活多变。
(Ⅱ)![]()
即
令![]()
![]()
即对任意
都成立则
即![]()
![]()
![]()
【试题解析】本题考查运用导数求三次函数的单调区间,从而求字母参数的取值范围,属于中等题
【高考考点】导数的三大应用
【解析】(I)![]()
在
取得极值
即![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com