所以![]()
由事件的独立性的
![]()
解答2(Ⅰ)设事件A表示“一个月内被投诉2次”设事件B表示“一个月内被投诉的次数不超过1次”
所以![]()
(Ⅱ)同解答1(Ⅱ)
29、(2009湖南卷理)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.
、
、
,现在3名工人独立地从中任选一个项目参与建设。
(I)求他们选择的项目所属类别互不相同的概率;
(II)记
为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求
的分布列及数学期望。
解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件
,
,
,i=1,2,3.由题意知![]()
相互独立,![]()
相互独立,![]()
相互独立,
,
,
(i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P(
)=,P(
)=
,P(
)=![]()
(1)他们选择的项目所属类别互不相同的概率
P=3!P(![]()
![]()
)=6P(
)P(
)P(
)=6![]()
![]()
![]()
![]()
![]()
=![]()
(2) 解法1 设3名工人中选择的项目属于民生工程的人数为
,由己已知,
-B(3,
),且
=3
。
所以P(
=0)=P(
=3)=![]()
=
,
P(
=1)=P(
=2)= ![]()
=
P(
=2)=P(
=1)=![]()
![]()
=![]()
P(
=3)=P(
=0)=
=
![]()
故
的分布是
|
|
0 |
1 |
2 |
3 |
|
P |
|
|
|
|
的数学期望E
=0![]()
+1![]()
+2![]()
+3![]()
=2
解法2 第i名工人选择的项目属于基础工程或产业工程分别为事件
,
i=1,2,3 ,由此已知,
·D,
相互独立,且
P(
)-(
,
)= P(
)+P(
)=
+
=
所以
--
,既
,
故
的分布列是
|
|
|
1 |
2 |
3 |
|
|
|
|
|
|
28、(2009陕西卷文)(本小题满分12分)
椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.4,0.5,0.1
(Ⅰ) 求该企业在一个月内共被消费者投诉不超过1次的概率;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率。
解 解答1(Ⅰ)设事件A表示“一个月内被投诉的次数为0”事件B表示“一个月内被投诉的次数为1”
所以![]()
(Ⅱ)设事件
表示“第
个月被投诉的次数为0”事件
表示“第
个月被投诉的次数为1”事件
表示“第
个月被投诉的次数为2”事件D表示“两个月内被投诉2次”
所以![]()
所以两个月中,一个月被投诉2次,另一个月被投诉0次的概率为![]()
27、(2009全国卷Ⅰ文)(本小题满分12分)(注意:在试题卷上作答无效)
甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束。假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立。已知前2局中,甲、乙各胜1局。
(Ⅰ)求再赛2局结束这次比赛的概率;
(Ⅱ)求甲获得这次比赛胜利的概率。
[解析]本小题考查互斥事件有一个发生的概率、相互独立事件同时发生的概率,综合题。
解 记“第
局甲获胜”为事件
,“第
局甲获胜”为事件
。
(Ⅰ)设“再赛2局结束这次比赛”为事件A,则
,由于各局比赛结果相互独立,故
![]()
。
(Ⅱ)记“甲获得这次比赛胜利”为事件B,因前两局中,甲、乙各胜1局,故甲获得这次比赛胜利当且仅当在后面的比赛中,甲先胜2局,从而
,由于各局比赛结果相互独立,故
![]()
![]()
26、(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率;
![]()
(II)至少有1人选择的项目属于民生工程的概率.
解 记第
名工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件
i=1,2,3.由题意知
相互独立,
相互独立,![]()
相互独立,
(i,j,k=1,2,3,且i,j,k互不相同)相互独立,
且
(Ⅰ)他们选择的项目所属类别互不相同的概率
P=![]()
![]()
![]()
(Ⅱ)至少有1人选择的项目属于民生工程的概率
P=![]()
![]()
![]()
25、(2009辽宁卷理)(本小题满分12分)
某人向一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。
(Ⅰ)设X表示目标被击中的次数,求X的分布列;
(Ⅱ)若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)
解(Ⅰ)依题意X的分列为
![]()
![]()
(Ⅱ)设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2.
B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.
依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,
,
所求的概率为
![]()
![]()
……
24、(2009湖北卷理)(本小题满分10分)(注意:在试题卷上作答无效)
一个盒子里装有4张大小形状完全相同的卡片,分别标有数2,3,4,5;另一个盒子也装有4张大小形状完全相同的卡片,分别标有数3,4,5,6。现从一个盒子中任取一张卡片,其上面的数记为x;再从另一盒子里任取一张卡片,其上面的数记为y,记随机变量
,求
的分布列和数学期望。
解 依题意,可分别取
、6、
11取,则有
![]()
的分布列为
|
|
5 |
6 |
7 |
8 |
9 |
10 |
11 |
|
|
|
|
|
|
|
|
|
.
23、(2009江西卷理)(本小题满分12分)
某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是
.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令
表示该公司的资助总额.
(1) 写出
的分布列; (2) 求数学期望
.
解(1)
的所有取值为![]()
![]()
![]()
(2)
.
22、(2009安徽卷理)(本小题满分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到过疫区.B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是
.同样也假定D受A、B和C感染的概率都是
.在这种假定之下,B、C、D中直接受A感染的人数X就是一个随机变量.写出X的分布列(不要求写出计算过程),并求X的均值(即数学期望).
本小题主要考查古典概型及其概率计算,考查取有限个值的离散型随机变量及其分布列和均值的概念,通过设置密切贴近现实生活的情境,考查概率思想的应用意识和创新意识。体现数学的科学价值。本小题满分12分。
解 随机变量X的分布列是
|
X |
1 |
2 |
3 |
|
P |
|
|
|
X的均值为![]()
附:X的分布列的一种求法
共有如下6种不同的可能情形,每种情形发生的概率都是
:
|
① |
② |
③ |
④ |
⑤ |
⑥ |
|
A-B-C-D |
A-B-C └D |
A-B-C └D |
A-B-D └C |
A-C-D └B |
|
在情形①和②之下,A直接感染了一个人;在情形③、④、⑤之下,A直接感染了两个人;在情形⑥之下,A直接感染了三个人。
21、(2009山东卷理)(本小题满分12分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3
分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第
三次,某同学在A处的命中率q
为0.25,在B处的命中率为q
,该同学选择先在A
处投一球,以后都在B处投,用
表示该同学投篮训练结束后所得的总分,其分布列
为
|
|
0
|
2
|
3 |
4 |
5 |
|
|
0.03
|
P1
|
P2 |
P3
|
P4
|
(1)求q
的值;
![]()
(2)求随机变量
的数学期望E
;
(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。
解 (1)设该同学在A处投中为事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25,
,
P(B)= q
,
.
根据分布列知:
=0时
=0.03,所以
,q
=0.8.
(2)当
=2时, P1=
![]()
=0.75 q
(
)×2=1.5 q
(
)=0.24
当
=3时, P2 =
=0.01,
当
=4时, P3=
=0.48,
当
=5时, P4=![]()
=0.24
所以随机变量
的分布列为
|
|
0
|
2
|
3 |
4 |
5 |
|
p
|
0.03
|
0.24
|
0.01 |
0.48
|
0.24
|
随机变量
的数学期望![]()
(3)该同学选择都在B处投篮得分超过3分的概率为![]()
![]()
;
该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.
由此看来该同学选择都在B处投篮得分超过3分的概率大.
20、(2009北京卷理)(本小题共13分)
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
,遇到红灯时停留的时间都是2min.
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(Ⅱ)求这名学生在上学路上因遇到红灯停留的总时间
的分布列及期望.
解
(Ⅰ)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A,因为事件A等于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A的概率为
.
(Ⅱ)由题意,可得
可能取的值为0,2,4,6,8(单位:min).
事件“
”等价于事件“该学生在路上遇到
次红灯”(
0,1,2,3,4),
∴
,
∴即
的分布列是
|
|
0 |
2 |
4 |
6 |
8 |
|
|
|
|
|
|
|
∴
的期望是
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com