【分析及解】(I)投掷一次正方体玩具,上底面每个数字的出现都是等可能的,其概率为
因为只投掷一次不可能返回到A点;若投掷两次点P就恰好能返回到A点,则上底面出现的两个数字应依次为:(1,3)、(3,1)、(2,2)三种结果,其概率为
,若投掷三次点P恰能返回到A点,则上底面出现的三个数字应依次为:(1,1,2)、(1,2,1)、(2,1,1)三种结果,其概率为![]()
若投掷四次点P恰能返回到A点,则上底面出现的四个数字应依次为:(1,1,1,1)
【例2】如图所示,质点P在正方形ABCD的四个顶点上按逆时针方向前进. 现在投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面上分别写有两个1、两个2、两个3一共六个数字. 质点P从A点出发,规则如下:当正方体上底面出现的数字是1,质点P前进一步(如由A到B);当正方体上底面出现的数字是2,质点P前两步(如由A到C),当正方体上底面出现的数字是3,质点P前进三步(如由A到D). 在质点P转一圈之前连续投掷,若超过一圈,则投掷终止.
(I)求点P恰好返回到A点的概率;
(II)在点P转一圈恰能返回到A点的所有结果中,
用随机变量ξ表示点P恰能返回到A点的投掷次数,求ξ的数学期望.
命题意图:概率与统计的综合问题主要考点是概率、分布列、期望,文科重点是概率,理科重点是概率、分布列、期望,考查从摸球、掷骰子、体育活动、射击及生产生活中抽象出的数学模型的能力,分类讨论的思想。属中档题的范畴。从命题者立意看,命题材料源于课本,贴近考生,贴近生活,背景公平,设问新颖。解题时,多读题目,多审题,注意语言转换是关键。
(II)求函数
的单调递增区间.
(I)求
的值及函数
的最大值;
跟踪训练1.(本小题满分12分)设函数![]()
,其中向量
,
,x∈R.
评注:三角函数的训练应当立足课本,紧扣高考真题,不需要加深加宽.解答三角函数考题的关键是进行必要的三角恒等变形,其解题通法是:发现差异(角度,函数,运算),寻找联系(套用、变用、活用公式,技巧,方法),合理转化(由因导果,由果探因).其解题技巧有:常值代换:特别是用“1”的代换;项的分拆与角的配凑;化弦(切)法;降次与升次;引入辅助角:asinθ+bcosθ=
sin(θ+
),这里辅助角
所在象限由a、b的符号确定,
角的值由
确定.此类题目的特点是主要考查三角函数的概念、周期性、单调性、有界性、“五点法”作图,以及求三角函数的最大(最小)值等.
故画出函数
上的图象为
![]()
2
0
-2
0
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com