8.已知函数
,且
,则函数
的值是 ( )
A.-2 B.-6 C.6 D.8
7.函数
在区间(–∞,2)上为减函数,则有: ( )
A.
B.
C.
D.![]()
6.若函数
在
上是单调函数,则有 ( )
A.
B.
C.
D.
5.若一次函数
在(-∞,+∞)上是增函数,则有 ( )
A.
B.
C.
D.![]()
4.下列图象中,不是函数图象的是 ( )
3.
( )
A.0 B.1 C.2 D.4
2.函数
的定义域为 ( )
A.
B.![]()
C.
D.![]()
1.已知集合
,
,则
(
)
A.
B.
C.
D.![]()
22.(文)(本小题满分14分)已知函数y=f(x)的图象经过坐标原点,且f(x)=x2-x+b,数列{an}的前n项和Sn=f(n)(n∈N*).
(1)求数列{an}的通项公式;
(2)若数列{bn}满足an+log3n=log3bn,求数列{bn}的前n项和Tn;
(3)设Pn=a1+a4+a7+…+a3n-2,Qn=a10+a12+a14+…+a2n+8,其中n∈N*,试比较Pn与Qn的大小,并证明你的结论.
解:(1)因为y=f(x)的图象过原点,所以f(x)=x2-x.
所以Sn=n2-n,
当n≥2时,an=Sn-Sn-1=n2-n-(n-1)2+(n-1)=2n-2,
又因为a1=S1=0适合an=2n-2,
所以数列{an}的通项公式为an=2n-2(n∈N*).
(2)由an+log3n=log3bn得:bn=n·3an=n·32n-2(n∈N*),
所以Tn=b1+b2+b3+…+bn=30+2·32+3·34+…+n·32n-2,9Tn=32+2·34+3·36+…+n·32n.
两式相减得:8Tn=n·32n-(1+32+34+36+…+32n-2)=n·32n-,
所以Tn=-=.
(3)a1,a4,a7,…,a3n-2组成以0为首项,6为公差的等差数列,所以Pn=×6=3n2-3n;
a10,a12,a14,…,a2n+8组成以18为首项,4为公差的等差数列,所以Qn=18n+×4=2n2+16n.
故Pn-Qn=3n2-3n-2n2-16n=n2-19n=n(n-19),
所以,对于正整数n,当n≥20时,Pn>Qn;
当n=19时,Pn=Qn;
当n<19时,Pn<Qn.
(理)(本小题满分14分)已知数列{an}的前n项和为Sn,点(an+2,Sn+1)在直线y=4x-5上,其中n∈N*.令bn=an+1-2an,且a1=1.
(1)求数列{bn}的通项公式;
(2)若f(x)=b1x+b2x2+b3x3+…+bnxn,求f′(1)的表达式,并比较f′(1)与8n2-4n的大小.
解:(1)∵Sn+1=4(an+2)-5,∴Sn+1=4an+3,
∴Sn=4an-1+3(n≥2),
∴an+1=4an-4an-1(n≥2),
∴an+1-2an=2(an-2an-1)(n≥2),
∴==2(n≥2).
∴数列{bn}为等比数列,其公比为q=2,首项b1=a2-2a1,
而a1+a2=4a1+3,且a1=1,∴a2=6,
∴b1=6-2=4,
∴bn=4×2n-1=2n+1.
(2)∵f(x)=b1x+b2x2+b3x3+…+bnxn,
∴f′(x)=b1+2b2x+3b3x2+…+nbnxn-1,
∴f′(1)=b1+2b2+3b3+…+nbn,
∴f′(1)=22+2·23+3·24+…+n·2n+1, ①
∴2f′(1)=23+2·24+3·25+…+n·2n+2, ②
①-②得
-f′(1)=22+23+24+…+2n+1-n·2n+2
=-n·2n+2=-4(1-2n)-n·2n+2,
∴f′(1)=4+(n-1)·2n+2,
∴f′(1)-(8n2-4n)=4(n-1)·2n-4(2n2-n-1)
=4(n-1)[2n-(2n+1)].
当n=1时,f′(1)=8n2-4n;
当n=2时,f′(1)-(8n2-4n)=4(4-5)=-4<0,f′(1)<8n2-4n;
当n=3时,f′(1)-(8n2-4n)>0,
结合指数函数y=2x与一次函数y=2x+1的图象知,当x>3时,总有2x>2x+1,
故当n≥3时,总有f′(1)>8n2-4n.
综上:当n=1时,f′(1)=8n2-4n;
当n=2时,f′(1)<8n2-4n;
当n≥3时,f′(1)>8n2-4n.
21.(本小题满分12分)已知各项都不相等的等差数例{an}的前六项和为60,且a6为a1和a21的等比中项.
(1)求数列{an}的通项公an及前n项和Sn;
(2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列{}的前n项和Tn.
解:(1)设等差数列{an}的公差为d,
则解得
∴an=2n+3.
Sn==n(n+4).
(2)由bn+1-bn=an,
∴bn-bn-1=an-1(n≥2,n∈N*).
当n≥2时,
bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=an-1+an-2+…+a1+b1
=(n-1)(n-1+4)+3=n(n+2).
对b1=3也适合,
∴bn=n(n+2)(n∈N*).
∴==(-).
Tn=(1-+-+…+-)
=(--)=.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com