0  420240  420248  420254  420258  420264  420266  420270  420276  420278  420284  420290  420294  420296  420300  420306  420308  420314  420318  420320  420324  420326  420330  420332  420334  420335  420336  420338  420339  420340  420342  420344  420348  420350  420354  420356  420360  420366  420368  420374  420378  420380  420384  420390  420396  420398  420404  420408  420410  420416  420420  420426  420434  447090 

2、1956年-1966年被称为“文艺学术发展的春天”

这一时期文学艺术硕果累累。出现这一局面的

主要原因是

A.“双百”方针的贯彻             

B.广大知识分子的辛勤劳动

C.社会生活的丰富多彩,文艺创作素材丰富   

D.全国知识分子会议的召开

试题详情

1、右图为恢复高考制度以来报考与录取人数变化示意图。此图不能反映

A.高等教育越来越受到民众重视

B.高等教育由精英教育逐步发展为大众教育

C.文革严重影响了高校正常招生

D.高等教育质量不断提升

试题详情

31. 解:(1)如图所示:······························································································ 4分

 

(注:正确画出1个图得2分,无作图痕迹或痕迹不正确不得分)

(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆;········································ 6分

若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆.    8分

(3)此中转站应建在的外接圆圆心处(线段的垂直平分线与线段的垂直平分线的交点处).    10分

理由如下:

是锐角三角形,

所以其最小覆盖圆为的外接圆,

设此外接圆为,直线交于点

故点内,从而也是四边形的最小覆盖圆.

所以中转站建在的外接圆圆心处,能够符合题中要求.

························································································ 12分

试题详情

29. 解:(1)将图1中的正方形等分成如图的四个小正方形,将这4个转发装置安装在这4个小正方形对角线的交点处,此时,每个小正方形的对角线长为,每个转发装置都能完全覆盖一个小正方形区域,故安装4个这种装置可以达到预设的要求.

····················· (3分)(图案设计不唯一)

(2)将原正方形分割成如图2中的3个矩形,使得.将每个装置安装在这些矩形的对角线交点处,设,则

,得

即如此安装3个这种转发装置,也能达到预设要求.·············································· (6分)

或:将原正方形分割成如图2中的3个矩形,使得的中点,将每个装置安装在这些矩形的对角线交点处,则,即如此安装三个这个转发装置,能达到预设要求.···················································································· (6分)

要用两个圆覆盖一个正方形,则一个圆至少要经过正方形相邻两个顶点.如图3,用一个直径为31的去覆盖边长为30的正方形,设经过交于,连,则,这说明用两个直径都为31的圆不能完全覆盖正方形

所以,至少要安装3个这种转发装置,才能达到预设要求.··································· (8分)

评分说明:示意图(图1、图2、图3)每个图1分.

 

30解:(1)

(2)设存在实数,使抛物线上有一点,满足以为顶点的三角形与等腰直角相似.

为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,一类是以为直角边的等腰直角三角形,另一类是以为斜边的等腰直角三角形.

①若为等腰直角三角形的直角边,则

由抛物线得:

的坐标为

代入抛物线解析式,得

抛物线解析式为

②若为等腰直角三角形的斜边,

的坐标为

代入抛物线解析式,得

抛物线解析式为,即

时,在抛物线上存在一点满足条件,如果此抛物线上还有满足条件的点,不妨设为点,那么只有可能是以为斜边的等腰直角三角形,由此得,显然不在抛物线上,因此抛物线上没有符合条件的其他的点.

时,同理可得抛物线上没有符合条件的其他的点.

的坐标为,对应的抛物线解析式为时,

都是等腰直角三角形,

总满足

的坐标为,对应的抛物线解析式为时,

同理可证得:总满足

试题详情

28. 解:(1)∵D(-8,0),∴B点的横坐标为-8,代入中,得y=-2.

∴B点坐标为(-8,-2).而A、B两点关于原点对称,∴A(8,2)

从而k=8×2=16

(2)∵N(0,-n),B是CD的中点,A,B,M,E四点均在双曲线上,

∴mn=k,B(-2m,-),C(-2m,-n),E(-m,-n)

=2mn=2k,mn=k,mn=k.

=k.∴k=4.

由直线及双曲线,得A(4,1),B(-4,-1)

∴C(-4,-2),M(2,2)

设直线CM的解析式是,由C、M两点在这条直线上,得

,解得a=b=

∴直线CM的解析式是y=x+.

(3)如图,分别作AA1⊥x轴,MM1⊥x轴,垂足分别为A1,M1

设A点的横坐标为a,则B点的横坐标为-a.于是

同理

∴p-q==-2

试题详情

27. 解:(1)由题意:BP=tcm,AQ=2tcm,则CQ=(4-2t)cm,

∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm

∴AP=(5-t)cm,

∵PQ∥BC,∴△APQ∽△ABC,

∴AP∶AB=AQ∶AC,即(5-t)∶5=2t∶4,解得:t=

∴当t为秒时,PQ∥BC

………………2分

(2)过点Q作QD⊥AB于点D,则易证△AQD∽△ABC

∴AQ∶QD=AB∶BC

∴2t∶DQ=5∶3,∴DQ=

∴△APQ的面积:×AP×QD=(5-t)×

∴y与t之间的函数关系式为:y=

………………5分

(3)由题意:

   当面积被平分时有:××3×4,解得:t=

   当周长被平分时:(5-t)+2t=t+(4-2t)+3,解得:t=1

∴不存在这样t的值

………………8分

(4)过点P作PE⊥BC于E

  易证:△PAE∽△ABC,当PE=QC时,△PQC为等腰三角形,此时△QCP′为菱形

∵△PAE∽△ABC,∴PE∶PB=AC∶AB,∴PE∶t=4∶5,解得:PE=

∵QC=4-2t,∴2×=4-2t,解得:t=

∴当t=时,四边形PQP′C为菱形

此时,PE=,BE=,∴CE=

………………10分

在Rt△CPE中,根据勾股定理可知:PC=

∴此菱形的边长为cm   ………………12分

试题详情

26. 解:方案一:由题意可得:

到甲村的最短距离为.······································································· (1分)

到乙村的最短距离为

将供水站建在点处时,管道沿铁路建设的长度之和最小.

即最小值为.········································································ (3分)

方案二:如图①,作点关于射线的对称点,则,连接于点,则

.·········································································· (4分)

中,

两点重合.即点.············································· (6分)

在线段上任取一点,连接,则

把供水站建在乙村的点处,管道沿线路铺设的长度之和最小.

即最小值为.··········· (7分)

方案三:作点关于射线的对称点,连接,则

于点,交于点,交于点

为点的最短距离,即

中,

两点重合,即点.

中,.············································· (10分)

在线段上任取一点,过于点,连接

显然

把供水站建在甲村的处,管道沿线路铺设的长度之和最小.

即最小值为.································································ (11分)

综上,供水站建在处,所需铺设的管道长度最短.········ (12分)

试题详情

25. 解:(1)取中点,联结

的中点,.································· (1分)

.··········································································· (1分)

,得;······································ (2分)(1分)

(2)由已知得.··································································· (1分)

以线段为直径的圆与以线段为直径的圆外切,

,即.·························· (2分)

解得,即线段的长为;······································································· (1分)

(3)由已知,以为顶点的三角形与相似,

又易证得.··············································································· (1分)

由此可知,另一对对应角相等有两种情况:①;②

①当时,

,易得.得;······················································· (2分)

②当时,

.又

,即,得

解得(舍去).即线段的长为2.········································ (2分)

综上所述,所求线段的长为8或2.

试题详情

24. 解:(1)∵点上,

.

(2)连结, 由题意易知

.

(3)正方形AEFG在绕A点旋转的过程中,F点的轨迹是以点A为圆心,AF为半径的圆.

第一种情况:当b>2a时,存在最大值及最小值;

因为的边,故当F点到BD的距离取得最大、最小值时,取得最大、最小值.

如图②所示时,

的最大值=

的最小值=

第二种情况:当b=2a时,存在最大值,不存在最小值;

的最大值=.(如果答案为4a2b2也可)

 

试题详情

23. 解(Ⅰ)当时,抛物线为

方程的两个根为

∴该抛物线与轴公共点的坐标是.  ················································ 2分

(Ⅱ)当时,抛物线为,且与轴有公共点.

对于方程,判别式≥0,有. ········································ 3分

①当时,由方程,解得

此时抛物线为轴只有一个公共点.································· 4分

②当时,

时,

时,

由已知时,该抛物线与轴有且只有一个公共点,考虑其对称轴为

应有  即

解得

综上,.   ················································································ 6分

(Ⅲ)对于二次函数

由已知时,时,

,∴

于是.而,∴,即

.  ············································································································  7分

∵关于的一元二次方程的判别式

,   

∴抛物线轴有两个公共点,顶点在轴下方.····························· 8分

又该抛物线的对称轴

又由已知时,时,,观察图象,

可知在范围内,该抛物线与轴有两个公共点. ············································ 10分

试题详情


同步练习册答案