5.函数f(x),g(x)在区间[-a,a] (a>0)上都是奇函数,则下列结论:①f(x)-g(x)在[-a,a]上是奇函数;②f(x)+g(x)在[-a,a]上是奇函数;③f(x)·g(x)在[-a,a]上是偶函数;④f(0)+g(0)=0,其中正确的个数是 ( )
?A.1 ?B.2 C.3 ?D.4
答案?D?
![]()
例1 判断下列函数的奇偶性.
(1)f(x)=
;
(2)f(x)=log2(x+
) (x∈R);
(3)f(x)=lg|x-2|.
解 (1)∵x2-1≥0且1-x2≥0,∴x=±1,即f(x)的定义域是{-1,1}.
∵f(1)=0,f(-1)=0,∴f(1)=f(-1),f(-1)=-f(1),
故f(x)既是奇函数又是偶函数.
(2)方法一 易知f(x)的定义域为R,
又∵f(-x)=log2[-x+
]=log2
=-log2(x+
)=-f(x),
∴f(x)是奇函数.
方法二 易知f(x)的定义域为R,
又∵f(-x)+f(x)=log2[-x+
]+log2(x+
)=log21=0,即f(-x)=-f(x),
∴f(x)为奇函数.
(3)由|x-2|>0,得x≠2.
∴f(x)的定义域{x|x≠2}关于原点不对称,故f(x)为非奇非偶函数.
例2 已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).
(1)求证:f(x)是奇函数;
(2)如果x∈R+,f(x)<0,并且f(1)=-
,试求f(x)在区间[-2,6]上的最值.
(1)证明 ∵函数定义域为R,其定义域关于原点对称.
∵f(x+y)=f(x)+f(y),令y=-x,∴f(0)=f(x)+f(-x).令x=y=0,
∴f(0)=f(0)+f(0),得f(0)=0.∴f(x)+f(-x)=0,得f(-x)=-f(x),
∴f(x)为奇函数.
(2)解 方法一 设x,y∈R+,∵f(x+y)=f(x)+f(y),
∴f(x+y)-f(x)=f(y). ∵x∈R+,f(x)<0,
∴f(x+y)-f(x)<0, ∴f(x+y)<f(x).
∵x+y>x, ∴f(x)在(0,+∞)上是减函数.又∵f(x)为奇函数,f(0)=0,
∴f(x)在(-∞,+∞)上是减函数.∴f(-2)为最大值,f(6)为最小值.
∵f(1)=-
,∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.
∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3.
方法二 设x1<x2,且x1,x2∈R.
则f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1).
∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)-f(x1)<0.即f(x)在R上单调递减.
∴f(-2)为最大值,f(6)为最小值.∵f(1)=-
,
∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.
∴所求f(x)在区间[-2,6]上的最大值为1,最小值为-3.
例3 (12分)已知函数f(x)的定义域为R,且满足f(x+2)=-f(x)?.
(1)求证:f(x)是周期函数;
(2)若f(x)为奇函数,且当0≤x≤1时,f(x)=
x,求使f(x)=-
在[0,2
009]上的所有x的个数.
(1)证明 ∵f(x+2)=-f(x),
∴f(x+4)=-f(x+2)=-[-f(x)]=f(x), 2分
∴f(x)是以4为周期的周期函数. 3分
(2)解 当0≤x≤1时,f(x)=
x,
设-1≤x≤0,则0≤-x≤1,∴f(-x)=
(-x)=-
x.
∵f(x)是奇函数,∴f(-x)=-f(x),
∴-f(x)=-
x,即f(x)=
x.
5分
故f(x)=
x(-1≤x≤1)
6分
又设1<x<3,则-1<x-2<1,
∴f(x-2)=
(x-2),
7分
又∵f(x-2)=-f(2-x)=-f((-x)+2)=-[-f(-x)]=-f(x),
∴-f(x)=
(x-2),
∴f(x)=-
(x-2)(1<x<3).
8分
∴f(x)=
9分
由f(x)=-
,解得x=-1.
∵f(x)是以4为周期的周期函数.
故f(x)=-
的所有x=4n-1 (n∈Z). 10分
令0≤4n-1≤2 009,则
≤n≤
,
又∵n∈Z,∴1≤n≤502 (n∈Z),
∴在[0,2
009]上共有502个x使f(x)=-
.
12分
4.已知f(x)=
是奇函数,则实数a的值等于
( )
?A.1 B.-1 C.0 ?D.±1
答案?A?
3.(2009·新郑二中模拟)设偶函数f(x)=loga|x-b|在(-∞,0)上单调递增,则f(a+1)与f(b+2)的大小关系为 ( ) A.f(a+1)≥f(b+2) B.f(a+1)≤f(b+2)
C.f(a+1)<f(b+2)? D.f(a+1)>f(b+2)
答案?D?
2.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为 ( )
?A.-1 B.0 C.1? D.2
答案?B?
1.(2008· 福建理,4)函数f(x)=x3+sinx+1(x∈R),若f(a)=2,则f(-a)的值为 ( )
? A.3 ?B.0 C.-1 D.-2
答案?B?
12.已知函数y=f(x)对任意x,y∈R均有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-
.
(1)判断并证明f(x)在R上的单调性;
(2)求f(x)在[-3,3]上的最值.
解 (1)f(x)在R上是单调递减函数
证明如下:
令x=y=0,f(0)=0,令x=-y可得:f(-x)=-f(x),在R上任取x1<x2,则x2-x1>0,
∴f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1).又∵x>0时,f(x)<0,
∴f(x2-x1)<0,即f(x2)<f(x1).由定义可知f(x)在R上为单调递减函数.
(2)∵f(x)在R上是减函数,∴f(x)在[-3,3]上也是减函数.
∴f(-3)最大,f(3)最小.f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=3×(-
=-2.
∴f(-3)=-f(3)=2.即f(x)在[-3,3]上最大值为2,最小值为-2.
§2.4 函数的奇偶性
![]()
基础自测
11.(2008·青岛调研)已知f(x)=
(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.
(1)证明 任设x1<x2<-2,则f(x1)-f(x2)=
∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)内单调递增.
(2)解 任设1<x1<x2,则f(x1)-f(x2)=
∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,∴a≤1.综上所述知0<a≤1.
10.函数f(x)对任意的实数m、n有f(m+n)=f(m)+f(n),且当x>0时有f(x)>0.
(1)求证:f(x)在(-∞,+∞)上为增函数;
(2)若f(1)=1,解不等式f[log2(x2-x-2)]<2.
(1)证明 设x2>x1,则x2-x1>0.
∵f(x2)-f(x1)=f(x2-x1+x1)-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0,
∴f(x2)>f(x1),f(x)在(-∞,+∞)上为增函数.
(2)解 ∵f(1)=1,∴2=1+1=f(1)+f(1)=f(2).
又f[log2(x2-x-2)]<2,∴f[log2(x2-x-2)]<f(2). ∴log2(x2-x-2)<2,于是
∴![]()
即-2<x<-1或2<x<3.∴原不等式的解集为{x|-2<x<-1或2<x<3}.
9.已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.
解 根据题意,由f(3)=1,得f(9)=f(3)+f(3)=2.
又f(x)+f(x-8)=f[x(x-8)],故f[x(x-8)]≤f(9).
∵f(x)在定义域(0,+∞)上为增函数,∴
解得8<x≤9.
8.已知下列四个命题:①若f(x)为减函数,则-f(x)为增函数;②若f(x)为增函数,则函数g(x)=
在其定义域内为减函数;③若f(x)与g(x)均为(a,b)上的增函数,则f(x)·g(x)也是区间(a,b)上的增函数;④若f(x)与g(x)在(a,b)上分别是递增与递减函数,且g(x)≠0,则
在(a,b)上是递增函数.其中正确命题的序号是
.
答案 ①
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com