18.![]()
已知函数f(x)= 其中f1(x)=-2(x-)2+1,f2(x)=-2x+2.(2000春京、皖(24)14分)
(I)在下面坐标系上画出y=f(x)的图象;
(II)设y=f2(x)(x∈[,1])的反函数为y=g(x),a1=1,a2=g(a1), ……,an=g(an-1),求数列{an}的通项公式,并求an;
(III)若x0∈[0,),x1=f(x0),f(x1)=x0,求x0.
17.设函数f(x)=|lgx|,若0<a<b,且f(a)>f(b),证明:ab<1(2000春京、皖(21)12分)
本小题主要考查函数的单调性、对数函数的性质、运算能力,考查分析问题解决问题的能力.满分12分.
16.已知二次函数f(x)=(lga)x2+2x+4lga的最大值为3,求a的值(2000春京、皖)
15.解方程-3lgx+4=0(99年广东10分)
14.设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0<x1<x2<.
Ⅰ.当x∈(0,x1)时,证明x<f(x)<x1;
Ⅱ.设函数f(x)的图象关于直线x=x0对称,证明:x0<.(97(24)12分)
13.已知二次函数y=f(x)在x=
+1处取得最小值-
(t>0),f(1)=0(95上海)
⑴求y=f(x)的表达式;
⑵若任意实数x都满足等式f(x)g(x)+anx+bn=xn+1(其中g(x)为多项式,n∈N),试用t表示an和bn;
⑶设圆Cn的方程为:(x-an)2+(y-bn)2=rn2,圆Cn与圆Cn+1外切(n=1,2,3…),{rn}是各项都为正数的等比数列,记Sn为前n个圆的面积之和,求rn和Sn.
12.某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴,设淡水鱼的市场价格为x元/千克,政府补贴为t元/千克,根据市场调查,当8≤x≤14时,淡水鱼的市场日供应量P千克与市场日需求量Q千克近似地满足关系:
P=1000(x+t-8) (x≥8,t≥0)
Q=500 (8≤x≤14)
当P=Q时的市场价格称为市场平衡价格.
①将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;
②为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?(95(25)12分)
11.已知关于x的方程2a2x-2-7ax-1+3=0有一个根是2,求a的值和方程其余的根.(92三南)
10.已知函数f(x)=(91三南)
⑴证明:f(x)在(-∞,+∞)上是增函数;
⑵证明:对不小于3的自然数n都有f(n)>
9. 根据函数单调性的定义,证明函数f(x)=-x3+1在R上是减函数.(91(24)10分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com