精英家教网 > 初中数学 > 题目详情

如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C=________度.

90 【解析】试题分析:如图∠A,∠B,∠C可分别看成是的圆周角,而,所以∠A+∠B+∠C=90度
练习册系列答案
相关习题

科目:初中数学 来源:2017-2018学年八年级数学北师大版上册 第4章 一次函数 单元测试卷 题型:单选题

为了鼓励节约用水,按以下规定收取水费:(1)每户每月用水量不超过20立方米,则每立方米水费1.8元;(2)若每户每月用水量超过20立方米,则超过部分每立方米水费3元.设某户一个月所交水费为y(元),用水量为x(立方米),则y与x的函数关系用图象表示为(  )

A. B. C. D.

D 【解析】试题解析:依题意可知,当用水20立方米以内时,y与x是正比例函数,当用水量超过20立方米也是一次函数,但是大于20立方米水,水费增加的比较快,所以D正确. 故选D.

查看答案和解析>>

科目:初中数学 来源:浙江杭州西湖区公益中学2017-2018学年八年级上学期期中数学 题型:解答题

如图,将边长为的正三角形纸片按如下顺序进行两次折叠,展开后,得折痕(如图①),点为其交点.

)探求的数量关系,并说明理由.

)如图②,若分别为上的动点.

①当的长度取得最小值时,求的长度.

②如图③,若点在线段上, ,则的最小值__________.

();()①;②最小值为. 【解析】试题分析:(1)根据等边三角形的性质得到∠BAO=∠ABO=∠OBD=30°,得到AO=OB,根据直角三角形的性质即可得到结论; (2)如图②,作点D关于BE的对称点D′,过D′作D′N⊥BC于N交BE于P,则此时PN+PD的长度取得最小值,根据线段垂直平分线的想知道的BD=BD′,推出△BDD′是等边三角形,得到BN的长,于是得到结论; (3...

查看答案和解析>>

科目:初中数学 来源:浙江杭州西湖区公益中学2017-2018学年八年级上学期期中数学 题型:单选题

“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为(  )

A. 3 B. 4 C. 5 D. 6

C 【解析】试题分析:如图所示,∵,∴=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C.

查看答案和解析>>

科目:初中数学 来源:北师大版九年级下册数学第三章圆单元检测卷 题型:解答题

如图,已知⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F,S△ABC=10cm2,C△ABC=10cm且∠C=60°.求:

(1)⊙O的半径r;

(2)扇形OEF的面积(结果保留π);

(3)扇形OEF的周长(结果保留π)

(1)2cm;(2)cm2;(3)(+4)cm. 【解析】试题分析:(1)连接AO、BO、CO,根据S△ABC=S△AOC+S△AOB+S△BOC即可求出⊙O的半径; (2)因为OF⊥AC,OE⊥BC,∠C=60°可求出∠EOF的度数,代入扇形面积计算公式即可求出扇形的面积; (3)利用扇形的周长=扇形的弧长+半径×2,即可求出扇形的周长. 试题解析:(1)如图,连接AO、...

查看答案和解析>>

科目:初中数学 来源:北师大版九年级下册数学第三章圆单元检测卷 题型:填空题

如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为________.

4 【解析】试题分析:令OC交BE于F,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥CD,∴BE∥CD,∵CD为⊙O的切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,,∵OF⊥BE,∴BF=EF=4,∴CD=4.

查看答案和解析>>

科目:初中数学 来源:北师大版九年级下册数学第三章圆单元检测卷 题型:单选题

如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于(  )

A. B. C. D.

D 【解析】过B作⊙O的直径BM,连接AM, 则有:∠MAB=∠CDB=90°,∠M=∠C, ∴∠MBA=∠CBD, 过O作OE⊥AB于E, Rt△OEB中,BE=AB=4,OB=5, 由勾股定理,得:OE=3, ∴tan∠MBA==, 因此tan∠CBD=tan∠MBA=, 故选D.

查看答案和解析>>

科目:初中数学 来源:人教版八年级下册数学全册综合测试卷 题型:填空题

如图,四边形ABCD的两条对角线AC,BD互相垂直,A1 , B1 , C1 , D1是四边形ABCD的中点四边形,如果AC=8,BD=10,那么四边形A1B1C1D1的面积为________.

20 【解析】试题解析:∵A1,B1,C1,D1是四边形ABCD的中点四边形,且AC=8,BD=10 ∴A1D1是△ABD的中位线 ∴A1D1=BD=×10=5 同理可得A1B1=AC=4 根据三角形的中位线定理,可以证明四边形A1B1C1D1是矩形 那么四边形A1B1C1D1的面积为A1D1×A1B1=5×4=20. 故答案为:20.

查看答案和解析>>

科目:初中数学 来源:人教版七年级下册 第1-3章 综合测试卷 题型:填空题

如图,已知EF∥GH,A、D为GH上的两点,M、B为EF上的两点,延长AM于点C,AB平分∠DAC,直线DB平分∠FBC,若∠ACB=100°,则∠DBA的度数为________.

50° 【解析】【解析】 如图,设∠DAB=∠BAC=x,即∠1=∠2=x.∵EF∥GH,∴∠2=∠3.在△ABC内,∠4=180°﹣∠ACB﹣∠1﹣∠3=180°﹣∠ACB﹣2x=80°﹣2x.∵直线BD平分∠FBC,∴∠5=(180°﹣∠4)=(180°﹣80°+2x)=50°+x,∴∠DBA=180°﹣∠3﹣∠4﹣∠5 =180°﹣x﹣(80°﹣2x)﹣(50°+x) =...

查看答案和解析>>

同步练习册答案