| A. | 8 | B. | 9 | C. | 10 | D. | 12 |
分析 如图,由点P为斜边BC的中点得到PC=$\frac{1}{2}$BC=6,再根据旋转的性质得PF=PC=6,∠FPC=90°,∠F=∠C=30°,根据含30度的直角三角形三边的关系,在Rt△PFH中计算出PH=$\frac{\sqrt{3}}{3}$PF=2$\sqrt{3}$;在Rt△CPM中计算出PM=$\frac{\sqrt{3}}{3}$PC=2$\sqrt{3}$,且∠PMC=60°,则∠FMN=∠PMC=60°,于是有∠FNM=90°,FM=PF-PM=6-2$\sqrt{3}$,则在Rt△FMN中可计算出MN=$\frac{1}{2}$FM=3-$\sqrt{3}$,FN=$\sqrt{3}$MN=3$\sqrt{3}$-3,然后根据三角形面积公式和利用△ABC与△DEF重叠部分的面积=S△FPH-S△FMN进行计算即可.
解答
解:如图,
∵点P为斜边BC的中点,
∴PB=PC=$\frac{1}{2}$BC=6,
∵△ABC绕着它的斜边中点P逆时针旋转90°至△DEF的位置,
∴PF=PC=6,∠FPC=90°,∠F=∠C=30°,
在Rt△PFH中,∵∠F=30°,
∴PH=$\frac{\sqrt{3}}{3}$PF=$\frac{\sqrt{3}}{3}$×6=2$\sqrt{3}$,
在Rt△CPM中,∵∠C=30°,
∴PM=$\frac{\sqrt{3}}{3}$PC=$\frac{\sqrt{3}}{3}$×6=2$\sqrt{3}$,∠PMC=60°,
∴∠FMN=∠PMC=60°,
∴∠FNM=90°,
而FM=PF-PM=6-2$\sqrt{3}$,
在Rt△FMN中,∵∠F=30°,
∴MN=$\frac{1}{2}$FM=3-$\sqrt{3}$,
∴FN=$\sqrt{3}$MN=3$\sqrt{3}$-3,
∴△ABC与△DEF重叠部分的面积=S△FPH-S△FMN
=$\frac{1}{2}$×6×2$\sqrt{3}$-$\frac{1}{2}$(3-$\sqrt{3}$)(3$\sqrt{3}$-3)
=9(cm2).
故选:B.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.
科目:初中数学 来源: 题型:选择题
| A. | 创 | B. | 城 | C. | 市 | D. | 明 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1对 | B. | 2对 | C. | 3对 | D. | 4对 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com