| A. | AB=2AE | B. | AC=2CD | C. | DB=2CD | D. | AD=2DE |
分析 根据线段的垂直平分线的性质,等腰三角形的性质,角平分线的性质求出求出∠CAD=∠BAD=∠B=30°,根据30°角的直角三角形的性质即可判断.
解答 解:∵DE垂直平分AB,
∴AD=BD,AB=2AE,
∴∠DAB=∠B,
∵∠CAD=∠DAB=$\frac{1}{2}$∠BAC,
∴∠BAC=2∠B,
∵∠C=90°,
∴∠B=30°,∠BAC=60°,
∴∠CAD=∠DAB=30°,
∴AD=2CD,BD=AD=2DE,
∵AD是∠CAB的平分线,DC⊥AC,DE⊥AB,
∴DE=CD,
∴BD=2CD,
∵AD=2CD,AD>AC,
∴AC≠2CD,
故选B.
点评 本题考查了三角形的内角和定理,线段垂直平分线的性质,角平分线的性质,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.
科目:初中数学 来源: 题型:选择题
| A. | 30° | B. | 40° | C. | 60° | D. | 50° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4cm | B. | 6cm | C. | 8cm | D. | 10cm |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 第4张 | B. | 第5张 | C. | 第6张 | D. | 第7张 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com