分析 (1)由AD与BC平行,得到一对内错角相等,再由AD=CE,AC=BC,利用SAS可得△DCA≌△ECB,由全等三角形的性质可得结论;
(2)由AD与BC平行,得到三角形AEF与三角形CEB相似,由相似得比例表示出AF,过E作EH垂直于AF,根据锐角三角函数定义表示出EH,进而表示出y与x的函数解析式,并求出x的范围即可;
(3)分两种情况考虑:①当∠FDG=90°时,如图2所示,在直角三角形ACD中,利用锐角三角函数定义求出AD的长,即为x的值,代入求出y的值,即为三角形AEF面积;②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,由相似列出关于x的方程,求出方程的解得到x的值,进而求出y的值,即为三角形AEF面积.
解答 (1)证明:∵AD∥BC,
∴∠DAC=∠ECB,
在△DCA和△ECB中,
$\left\{\begin{array}{l}{AD=CE}&{\;}\\{∠DAC=∠ECB}&{\;}\\{AC=BC}&{\;}\end{array}\right.$,
∴△DCA≌△ECB(SAS),
∴∠DCA=∠EBC;
(2)∵AD∥BC,
∴△AEF∽△CEB,
∴$\frac{AF}{BC}=\frac{AE}{CE}$,即$\frac{AF}{10}=\frac{10-x}{x}$,
解得:AF=$\frac{10(10-x)}{x}$,
作EH⊥AF于H,如图1所示,![]()
∵cos∠ACB=$\frac{4}{5}$,
∴EH=$\frac{3}{5}$AE=$\frac{3}{5}$(10-x),
∴y=S△AEF=$\frac{1}{2}$×$\frac{3}{5}$(10-x)×$\frac{10(10-x)}{x}$=$\frac{3(10-x)^{2}}{x}$,
∴y=$\frac{3{x}^{2}-60x+300}{x}$,
∵点G在线段CD上,
∴AF≥AD,即$\frac{10(10-x)}{x}$≥x,
∴x≤5$\sqrt{5}$-5,
∴0<x≤5$\sqrt{5}$-5,
∴y关于x的函数解析式为:y=$\frac{3{x}^{2}-60x+300}{x}$,(0<x≤5$\sqrt{5}$-5);
(3)分两种情况考虑:
①当∠FDG=90°时,如图2所示:![]()
在Rt△ADC中,AD=AC×$\frac{4}{5}$=8,即x=8,
∴S△AEF=y=$\frac{3×(10-8)^{2}}{8}$=$\frac{3}{2}$;
②当∠DGF=90°时,过E作EM⊥BC于点M,如图3所示,![]()
由(1)得:CE=AF=x,
在Rt△EMC中,EM=$\frac{3}{5}$x,MC=$\frac{4}{5}$x,
∴BM=BC-MC=10-$\frac{4}{5}$x,
∵∠GCE=∠GBC,∠EGC=∠CGB,
∴△CGE∽△BGC,
∴$\frac{CE}{CB}$=$\frac{CG}{BG}$,即$\frac{x}{10}$=$\frac{CG}{BG}$,
∵∠EBM=∠CBG,∠BME=∠BGC=90°,
∴△BME∽△BGC,
∴$\frac{CG}{BG}$=$\frac{EM}{BM}$=$\frac{\frac{3}{5}x}{10-\frac{4}{5}x}$,
∴$\frac{x}{10}$=$\frac{\frac{3}{5}x}{10-\frac{4}{5}x}$,即x=5,
此时y=$\frac{3×(10-5)^{2}}{5}$=15,
综上,此时△AEF的面积为$\frac{3}{2}$或15.
点评 此题属于相似型综合题,涉及的知识有:平行线的判定,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数定义,利用了分类讨论的思想,熟练掌握相似三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 了解全国七年级学生的视力情况 | B. | 对乘坐高铁的乘客进行安检 | ||
| C. | 了解一批电视机的使用寿命 | D. | 检测汾河某段水域的水质情况 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | m<0 | B. | m>0 | C. | m<$\frac{1}{2}$ | D. | m>$\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com