精英家教网 > 初中数学 > 题目详情
13.已知:△ABC,∠ABC=90°,tan∠BAC=$\frac{1}{2}$,点D点在AC边的延长线上,且DB2=DC•DA(如图).
(1)求$\frac{DC}{CA}$的值;
(2)如果点E在线段BC的延长线上,联结AE.过点B作AC的垂线,交AC于点F,交AE于点G.
①如图1,当CE=3BC时,求$\frac{BF}{FG}$的值;
②如图2,当CE=BC时,求$\frac{{S}_{△BCD}}{{S}_{△BEG}}$的值;

分析 (1)由三角函数和已知条件得出得出$\frac{BC}{AB}$=$\frac{1}{2}$,$\frac{DC}{DB}$=$\frac{DB}{DA}$,证出△DBC∽△DAB,得出对应边成比例,即可得出结果;
(2)①作EH⊥BG交BG的延长线于H,由平行线得出△BCF∽△BEH,得出$\frac{BF}{BH}$=$\frac{CF}{EH}$=$\frac{BC}{BE}$=$\frac{1}{4}$,证明△CFB∽△BFA,得出$\frac{CF}{BF}$=$\frac{BF}{AF}$=$\frac{BC}{AB}$=$\frac{1}{2}$,得出$\frac{CF}{AF}$=$\frac{CF}{BF}$•$\frac{BF}{AF}$=$\frac{1}{4}$,证出AF=EH,再由平行线证出△AFG∽△EHG,得出$\frac{FG}{GH}$=$\frac{AF}{EH}$=1,设BF=a,则BH=4a,得出FG=GH=$\frac{3}{2}$a,即可得出结果;
②作EH⊥BG交BG的延长线于H,同①1得出$\frac{CF}{AF}$=$\frac{CF}{BF}$•$\frac{BF}{AF}$=$\frac{1}{4}$,设CF=a,则AF=4a,EH=2a,CA=CF+AF=5a,由(1)知$\frac{DC}{CA}$=$\frac{1}{3}$,得出DC=$\frac{5}{3}$a,由平行线得出△AFG∽△EHG,得出$\frac{FG}{GH}$=$\frac{AF}{EH}$=$\frac{4a}{2a}$=2,设GH=b,则FG=2b,BF=FH=3b,BG=BF+FG=5b,由三角形的面积公式即可得出结果.

解答 解(1)在Rt△ABC中,tan∠BAC=$\frac{BC}{AB}$=$\frac{1}{2}$,
∵DB2=DC•DA,
∴$\frac{DC}{DB}$=$\frac{DB}{DA}$,
∵∠D=∠D,
∴△DBC∽△DAB,
∴$\frac{DC}{DB}$=$\frac{DB}{DA}$=$\frac{BC}{AB}$=$\frac{1}{2}$,
∴$\frac{DC}{DA}$=$\frac{1}{4}$,
∴$\frac{DC}{CA}$=$\frac{DC}{DA-DC}$=$\frac{1}{3}$;
(2)①作EH⊥BG交BG的延长线于H,如图1所示:
∵CE=3BC,
∴$\frac{BC}{BE}$=$\frac{1}{4}$,
∵BF⊥AD,
∴AD∥EH,
∴△BCF∽△BEH,
∴$\frac{BF}{BH}$=$\frac{CF}{EH}$=$\frac{BC}{BE}$=$\frac{1}{4}$,
∵∠ABC=90°,BF⊥AD,
∴△CFB∽△BFA,
∴$\frac{CF}{BF}$=$\frac{BF}{AF}$=$\frac{BC}{AB}$=$\frac{1}{2}$,
∴$\frac{CF}{AF}$=$\frac{CF}{BF}$•$\frac{BF}{AF}$=$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{4}$,
∵$\frac{CF}{EH}$=$\frac{1}{4}$,
∴AF=EH,
∵AD∥EH,
∴△AFG∽△EHG,
∴$\frac{FG}{GH}$=$\frac{AF}{EH}$=1,
设BF=a,
∵$\frac{BF}{BH}$=$\frac{1}{4}$,
∴BH=4a,
∴FH=BH-BF=4a-a=3a,
∴FG=GH=$\frac{3}{2}$a,
∴$\frac{BF}{FG}$=$\frac{a}{\frac{3}{2}a}$=$\frac{2}{3}$;
②作EH⊥BG交BG的延长线于H,如图2所示:
∵CE=BC,
∴$\frac{BC}{BE}$=$\frac{1}{2}$,
∵BF⊥AD,
∴AD∥EH,
∴△BCF∽△BEH,
∴$\frac{BF}{BH}$=$\frac{CF}{EH}$=$\frac{BC}{BE}$=$\frac{1}{2}$,
∵∠ABC=90°,BF⊥AD,
∴△CFB∽△BFA,
∴$\frac{CF}{BF}$=$\frac{BF}{AF}$=$\frac{BC}{AB}$=$\frac{1}{2}$,
∴$\frac{CF}{AF}$=$\frac{CF}{BF}$•$\frac{BF}{AF}$=$\frac{1}{2}$×$\frac{1}{2}$=$\frac{1}{4}$,
设CF=a,则AF=4a,EH=2a,CA=CF+AF=a+4a=5a,
由(1)知$\frac{DC}{CA}$=$\frac{1}{3}$,
∴DC=$\frac{5}{3}$a,
∵AD∥EH,
∴△AFG∽△EHG,
∴$\frac{FG}{GH}$=$\frac{AF}{EH}$=$\frac{4a}{2a}$=2,
设GH=b,则FG=2b,BF=FH=3b,BG=BF+FG=3b+2b=5b,
∴$\frac{{S}_{△BCD}}{{S}_{△BEG}}$=$\frac{\frac{1}{2}DC•BF}{\frac{1}{2}BG•EH}$=$\frac{\frac{5}{3}a•3b}{5b•2a}$=$\frac{1}{2}$.

点评 本题是相似形综合题目,考查了相似三角形的判定与性质、平行线的性质、三角形面积的计算、比例的性质等知识;本题综合性强,难度较大,特别是(2)中,需要多次证明三角形相似才能得出结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.先化简,再求值:3(x2y+xy2)+(2x2y-3xy2),其中x=-2,y=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,AC和BD相交于点O,OA=OC,OB=OD.求证:
(1)DC=AB;
(2)DC∥AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在Rt△ABC中,∠ACB=90°,AC=6,D为BC边上一点,CD=3,过A,C,D三点的⊙O与斜边AB交于点E,连结DE.
(1)求证:△BDE∽△BAC;
(2)求△ACD外接圆的直径的长;
(3)若AD平分∠CAB,求出BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=$\frac{4}{5}$,点E在对角线AC上,且CE=AD,BE的延长线与射线AD、射线CD分别相交于点F、G,设AD=x,△AEF的面积为y.
(1)求证:∠DCA=∠EBC;
(2)如图,当点G在线段CD上时,求y关于x的函数解析式,并写出它的定义域;
(3)如果△DFG是直角三角形,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在Rt△ABC中,AB=10cm,sinA=$\frac{3}{5}$.如果点P由B出发沿BA向点A匀速运动,同时点Q由A出发沿AC向点C匀速运动.已知点P的速度为2cm/s,点Q的速度为1cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤5)
(1)求AC,BC的长;
(2)当t为何值时,△APQ的面积为△ABC面积的$\frac{1}{10}$;
(3)当t为何值时,△APQ与△ABC相似.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于(  )
A.-1B.1C.3D.5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图所示,矩形中,AB=2,AD=3,点P为BC上与点B、C不重合的任意一点,设PA=x,D到AP的距离为y,则y与x的函数关系式为y=$\frac{6}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.点C是线段AB的黄金分割点,且AB=6cm,则BC的长为(  )
A.(3$\sqrt{5}$-3)cmB.(9-3$\sqrt{5}$)cmC.(3$\sqrt{5}$-3)cm 或(9-3$\sqrt{5}$)cmD.(9-3$\sqrt{5}$)cm 或(6$\sqrt{5}$-6)cm

查看答案和解析>>

同步练习册答案