精英家教网 > 初中数学 > 题目详情
5.如图,△ACB和△ADE均为等边三角形,点C、E、D在同一直线上,连接BD.
求证:CE=BD.

分析 由等边三角形的性质就可以得出AD=AE,AB=AC,∠DAE=∠BAC=60°,由等式的性质就可以得出∠DAB=∠EAC,就可以得出△ADB≌△AEC而得出结论.

解答 解:∵△ACB和△ADE均为等边三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAE-∠BAE=∠BAC-∠BAE,
∴∠DAB=∠EAC.
在△ADB和△AEC中,
$\left\{\begin{array}{l}{AD=AE}\\{∠DAB=∠EAC}\\{AB=AC}\end{array}\right.$,
∴△ADB≌△AEC(SAS),
∴CE=BD.

点评 本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,有如下定义:若直线l和图形W相交于两点,且这两点的距离不小于定值k,则称直线l与图形W成“k相关”,此时称直线与图形W的相关系数为k.
(1)若图形W是由A(-2,-1),B(-2,1),C(2,1),D(2,-1)顺次连线而成的矩形:
①l1:y=x+2,l2:y=x+1,l3:y=-x-3这三条直线中,与图形W成“$\sqrt{2}$相关”的直线有l1和l2
②画出一条经过(0,1)的直线,使得这条直线与W成“$\sqrt{5}$相关”;
③若存在直线与图形W成“2相关”,且该直线与直线y=$\sqrt{3}$x平行,与y 轴交于点Q,求点Q纵坐标yQ的取值范围;
(2)若图形W为一个半径为2的圆,其圆心K位于x轴上.若直线y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$与图形 W成“3相关”,请直接写出圆心K的横坐标xK的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知:如图1,OB、OC分别为定角(大小不会发生改变)∠AOD内部的两条动射线
(1)当OB、OC运动到如图1的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=30°,求∠AOD的度数.
(2)在(1)的条件下,射线OM、ON分别为∠AOB、∠COD的平分线,当∠COB绕着点O旋转时(如图2),下列结论:①∠AOM-∠DON的值不变;②∠MON的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.
(3)在(1)的条件下(如图3),OE、OF是∠AOD外部的两条射线,且∠EOB=∠COF=90°,OP平分∠EOD,OQ平分∠AOF,当∠BOC绕着点O旋转时,∠POQ的大小是否会发生变化?若不变,求出其度数;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,点D,E分别在△ABC 的AB,AC边上,且DE∥BC,如果AD:AB=2:3,那么DE:BC等于(  )
A.3:2B.2:5C.2:3D.3:5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,对于平面直角坐标系xOy中的点P和线段AB,给出如下定义:如果线段AB上存在两个点M,N,使得∠MPN=30°,那么称点P为线段AB的伴随点.

(1)已知点A(-1,0),B(1,0)及D(1,-1),E($\frac{5}{2}$,-$\sqrt{3}}$),F(0,2+$\sqrt{3}$),
①在点D,E,F中,线段AB的伴随点是D、F;
②作直线AF,若直线AF上的点P(m,n)是线段AB的伴随点,求m的取值范围;
(2)平面内有一个腰长为1的等腰直角三角形,若该三角形边上的任意一点都是某条线段a的伴随点,请直接写出这条线段a的长度的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,几何体是由3个大小完全一样的正方体组成的,它的主视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列计算正确的是(  )
A.4a-9a=5aB.a-a=aC.4a+a=5D.a+a=2a

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图所示,已知△ABC中,AD是∠BAC的平分线,E为AD上一点,EF⊥BC于F,∠B=40°,∠C=70°,则∠DEF=15°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.已知圆锥的底面圆半径为3,母线长为5,则圆锥的侧面积是15π.

查看答案和解析>>

同步练习册答案