分析 (1)根据题意先作出合适的辅助线,然后根据题意可以求得∠AP6C的度数;
(2)根据在△ABC中,∠C=90°,∠A=30°,CA=24cm,可以求得P6C的长度,然后根据第一问求得的∠AP6C的度数,可以求得线段P6P2的长.
解答 解:(1)如下图一所示:![]()
∵在AB边上有一系列点P1,P2,P3…P8,使得∠P1CA=10°,∠P2CA=20°,∠P3CA=30°,…∠P8CA=80°,
∴∠P6CA=60°,
∵∠A=30°,
∴∠AP6C=180°-∠P6CA-∠A=180°-60°-30°=90°,
即∠AP6C的度数是90°;
(2)∵在△ABC中,∠C=90°,∠A=30°,CA=24cm,∠AP6C=90°,
∴AC=2P6C,
∴P6C=12cm,
∵∠P2CA=20°,∠A=30°,
∴∠CP2P6=∠P2CA+∠A=50°,
∵$tan∠C{P}_{2}{P}_{6}=\frac{C{P}_{6}}{{P}_{6}{P}_{2}}$,tan50°≈1.20,
∴${P}_{6}{P}_{2}=\frac{C{P}_{6}}{tan∠C{P}_{2}{P}_{6}}=\frac{12}{1.20}=10$cm,
即线段P6P2的长是10cm.
点评 本题考查解直角三角形的应用,解题的关键是明确题意,找出各边之间的关系,然后找出所求问题需要的条件.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=3}\\{y=-1}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com