精英家教网 > 初中数学 > 题目详情
2.如图,数轴上线段AB=2,CD=4,点A在数轴上表示的数是-10,点C在数轴上表示的数是16,若线段AB以6个单位/秒的速度向右匀速运动,同时线段CD以2个单位/秒的速度向左匀速运动.
(1)问运动多少秒时BC=8?
(2)当运动到BC=8时,点B在数轴上表示的数是4或16
(3)当3≤t<$\frac{13}{4}$,B点运动到线段CD上时,P是线段AB上一点,是否存在关系式BD-AP=3PC?若存在,求线段PC的长;若不存在,请说明理由.

分析 (1)设运动t秒时,BC=8(单位长度),然后分点B在点C的左边和右边两种情况,根据题意列出方程求解即可;
(2)由(1)中求出的运动时间即可求出点B在数轴上表示的数;
(3)随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况.

解答 解:(1)设运动t秒时,BC=8单位长度,
①当点B在点C的左边时,
由题意得:6t+8+2t=24
解得:t=2(秒);
②当点B在点C的右边时,
由题意得:6t-8+2t=24
解得:t=4(秒).

(2)当运动2秒时,点B在数轴上表示的数是4;
当运动4秒时,点B在数轴上表示的数是16;
故答案为:4或16;

(3)当t=3时,点B和点C重合,点P在线段AB上,0<PC≤2,且BD=CD=4,AP+3PC=AB+2PC=2+2PC,
当PC=1时,BD=AP+3PC,即BD-AP=3PC;
当3≤t<$\frac{13}{4}$时,点C在点A和点B之间,0<PC<2,
①点P在线段AC上时,BD=CD-BC=4-BC,AP+3PC=AC+2PC=AB-BC+2PC=2-BC+2PC,
当PC=1时,有BD=AP+3PC,即BD-AP=3PC;
点P在线段BC上时,BD=CD-BC=4-BC,AP+3PC=AC+4PC=AB-BC+4PC=2-BC+4PC,
当PC=$\frac{1}{2}$时,有BD=AP+3PC,即BD-AP=3PC;
3°当t=$\frac{13}{4}$时,点A与点C重合,0<PC≤2,BD=CD-AB=2,AP+3PC=4PC,
当PC=$\frac{1}{2}$时,有BD=AP+3PC,即BD-AP=3PC;
此时,PC=1或$\frac{1}{2}$.

点评 本题考查两点间的距离,并综合了数轴、一元一次方程和线段长短的比较,难度较大,注意对第三问进行分情况讨论,不要漏解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图,已知直线y1=-$\frac{1}{2}$x+1与x轴交于点A,与直线y2=-$\frac{3}{2}$x交于点B.
(1)求点A、B的坐标;
(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.青少年“心理健康“问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康“知识测试.并随机抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频数分布表和频数分布直方图(如图).请回答下列问题:
分组频数频率
50.5~60.540.08
60.5~70.5140.28
70.5~80.5160.32
80.5~90.560.12
90.5~100.5100.20
合计501.00
(1)填写频数分布表中的空格,并补全频数分布直方图;
(2)若成绩在70分以上(不含70分)为心理健康状况良好.若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心理辅导.请根据上述数据分析该校学生是否需要加强心理辅导,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.反比例函数y=-$\frac{3}{x}$的图象上有P1(x1,-2),P2(x2,-3)两点,则x1与x2的大小关系是(  )
A.x1<x2B.x1=x2C.x1>x2D.不确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列各式中,从左到右的变形是因式分解的是(  )
A.2a2-2a+1=2a(a-1)+1B.(x+y)(x-y)=x2-y2
C.x2-6x+5=(x-5)(x-1)D.x2+y2=(x-y)2+2xy

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列四个生活、生产现象中,其中可用“两点之间,线段最短”来解释的现象有(  )
①用两个钉子就可以把木条固定在墙上
②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线
③从A地到B地架设电线,总是尽可能沿着直线架设
④把弯曲的公路改直,就能缩短路程.
A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.甲种物品每个1kg,乙种物品每个2.5kg,现购买甲种物品x个,乙种物品y个,共30kg.若两种物品都买,则所有可供购买方案的个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在△ABC中,CD⊥AB于点D,∠A=2∠BCD.

(1)如图1,求证:AB=AC;
(2)如图2,E是AB上一点,F是AC延长线上一点,连接CE、BF,CE=BF,求证:∠BEC=∠CFB;
(3)如图3,在(2)的条件下,作EG∥BC交AC于点G,若∠CBF=2∠ACE,EG=2,BC=6,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)如图①,AB是⊙O的弦,点C是⊙O上的一点,在直线AB上方找一点D,使得∠ADB=∠ACB,画出∠ADB,并说明理由;
(2)如图②,AB是⊙O的弦,点C是⊙O上的一点,在过点C的直线l上找一点P,使得∠APB<∠ACB,画出∠APB,并说明理由;
问题解决:
(3)如图③,已知足球球门宽AB约为5$\sqrt{2}$米,一球员从距B点5$\sqrt{2}$米的C点(点A、B、C均在球场底线上),沿与AC成45°角的CD方向带球.试问,该球员能否在射线CD上找到一点P,使得点P为最佳射门点(即∠APB最大)?若能找到,求出这时点P与点C的距离;若找不到,请说明理由.

查看答案和解析>>

同步练习册答案