6£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßy=ax2+bx+3µÄ¶¥µãΪM£¨2£¬-1£©£¬½»xÖáÓÚA¡¢BÁ½µã£¬½»yÖáÓÚµãC£¬ÆäÖеãBµÄ×ø±êΪ£¨3£¬0£©£®

£¨1£©Çó¸ÃÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Éè¾­¹ýµãCµÄÖ±ÏßÓë¸ÃÅ×ÎïÏßµÄÁíÒ»¸ö½»µãΪD£¬ÇÒÖ±ÏßCDºÍÖ±ÏßCA¹ØÓÚÖ±ÏßBC¶Ô³Æ£¬ÇóÖ±ÏßCDµÄ½âÎöʽ£»
£¨3£©µãEΪÏß¶ÎBCÉϵ͝µã£¨µãE²»ÓëµãC£¬BÖØºÏ£©£¬ÒÔEΪ¶¥µã×÷¡ÏOEF=45¡ã£¬ÉäÏßEF½»Ïß¶ÎOCÓÚµãF£¬µ±¡÷EOFΪµÈÑüÈý½ÇÐÎʱ£¬Çó´ËʱµãEµÄ×ø±ê£»
£¨4£©ÔÚ¸ÃÅ×ÎïÏߵĶԳÆÖáÉÏ´æÔÚµãP£¬Âú×ãPM2+PB2+PC2=35£¬ÇóµãPµÄ×ø±ê£»²¢Ö±½Óд³ö´ËʱֱÏßOPÓë¸ÃÅ×ÎïÏß½»µãµÄ¸öÊý£®

·ÖÎö £¨1£©ÀûÓö¥µãʽ£¬½«ÒÑÖªµÄÁ½µã×ø±ê´úÈëÆäÖнøÐÐÇó½â¼´¿É£»
£¨2£©ÓÉC¡¢BÁ½µãµÄ×ø±ê²»ÄÑÅжϳöOB=OC£¬¼´¡ÏCBO=45¡ã£¬ÄÇôÈôÈ¡BN¡ÍxÖá½»CDÓÚN£¬½áºÏ¡°Ö±ÏßCDºÍÖ±ÏßCA¹ØÓÚÖ±ÏßCB¶Ô³Æ¡±¿ÉµÃ³öA¡¢N¹ØÓÚÖ±ÏßBC¶Ô³Æ£¬½áºÏµãBµÄ×ø±êÒÔ¼°ABµÄ³¤¼´¿ÉµÃµ½µãNµÄ×ø±ê£¬ÔÚÃ÷È·C¡¢NÁ½µã×ø±êµÄÇé¿öÏ£¬Ö±ÏßCDµÄ½âÎöʽ¼´¿ÉÓÉ´ý¶¨ÏµÊý·¨ÇóµÃ£»
£¨4£©ÏÈÉè³öµãPµÄ×ø±ê£¬¶øM¡¢B¡¢CÈýµã×ø±êÒÑÖª£¬¼´¿ÉµÃµ½PM2¡¢PB2¡¢PC2µÄ±í´ïʽ£¬½áºÏÌâ¸ÉµÄÒÑÖªÌõ¼þ¼´¿ÉÇó³öµãPµÄ×ø±ê£¬´Ó¶ø½øÒ»²½ÅжϳöÖ±ÏßOPÓëÅ×ÎïÏߵĽ»µã¸öÊý£®

½â´ð ½â£º£¨1£©ÉèÅ×ÎïÏߵĽâÎöʽΪÏßY=a£¨x-2£©2-1£®
¡ßµãB£¨3£¬0£©ÔÚÅ×ÎïÏßÉÏ£¬¡à0=a£¨3-2£©2-1£¬
½âµÃ£ºa=1£®
Ôò¸ÃÅ×ÎïÏߵĽâÎöʽΪ£ºy=£¨x-2£©2-1£¬¼´y=x2-4x+3£»

£¨2£©ÔÚy=x2-4x+3ÖÐÁîx=0£¬µÃy=3£®
¹ÊC£¨0£¬3£©£®
ÔòOB=OC=3£®
Ôò¡ÏABC=45¡ã£®
¹ýµãB×÷BN¡ÍxÖá½»CDÓÚµãN£¨Èçͼ1£©£¬Ôò¡ÏABC=¡ÏNBC=45¡ã£®
¡ßÖ±ÏßCDºÍÖ±ÏßCA¹ØÓÚÖ±ÏßBC¶Ô³Æ£¬
¡à¡ÏACB=¡ÏNCB£¬
ÔÚ¡÷ACBºÍ¡÷NCBÖÐ
$\left\{\begin{array}{l}{¡ÏNCB=¡ÏACB}\\{CB=CB}\\{¡ÏNBC=¡ÏABC}\end{array}\right.$£¬
¡à¡÷ACB¡Õ¡÷NCB£¨ASA£©£®
¡àBN=BA£®
¡ßA£¬B¹ØÓÚÅ×ÎïÏߵĶԳÆÖáx=2¶Ô³Æ£¬B£¨3£¬0£©£¬
¡àA£¨1£¬0£©£®¡àBN=BA=2£®¡àN£¨3£¬2£©£®
ÉèÖ±ÏßCDµÄ½âÎöʽΪ£ºy=kx+3£¬
Ôò2=3k+3£¬
½âµÃ£ºk=-$\frac{1}{3}$£¬
ÔòÖ±ÏßCDµÄ½âÎöʽΪ£ºy=-$\frac{1}{3}$x+3£»

£¨3£©µ±EF=OFʱ£¬E£¨$\frac{3}{2}$£¬$\frac{3}{2}$£©£¬
µ±OE=EFʱ£¬Ö¤Ã÷¡÷OBE¡Õ¡÷ECF£¬E£¨$\frac{3\sqrt{2}}{2}$£¬$\frac{6-3\sqrt{2}}{2}$£©£»

£¨4£©ÉèP£¨2£¬p£©£¬¡ßM£¨2£¬-1£©£¬B£¨3£¬0£©£¬C£¨0£¬3£©£¬
¡à¸ù¾Ý¹´¹É¶¨Àí£¬µÃPM2=£¨p+1£©2=p2+2p+1£¬PB2=£¨3-2£©2+p2=p2+1£¬
PC2=22+£¨p-3£©2=p2-6p+13£¬
¡ßPM2+PB2+PC2=35£¬
¡àp2+2p+1+p2-6p+13=35£¬
ÕûÀí£¬µÃ3p2-4p-20=0£¬
½âµÃ£ºp1=-2£¬p2=$\frac{10}{3}$£®
¡àP£¨2£¬-2£©»ò£¨2£¬$\frac{10}{3}$£©£®
µ±P£¨2£¬$\frac{10}{3}$£©Ê±£¬Ö±ÏßOP£ºy=$\frac{5}{3}$x£¬ÁªÁ¢Å×ÎïÏߵĽâÎöʽÓУº$\frac{5}{3}$x=x2-4x+3£¬
½âµÃ¡÷£¾0£¬Óë¸ÃÅ×ÎïÏßÓÐ2¸ö½»µã£»
µ±P£¨2£¬-2£©Ê±£¬Ö±ÏßOP£ºy=-x£¬ÁªÁ¢Å×ÎïÏߵĽâÎöʽÓУº
x2-4x+3=-x£¬¼´ x2-3x+3=0
¡÷=£¨-3£©2-4¡Á3£¼0£¬
¹Ê¸ÃÖ±ÏßÓëÅ×ÎïÏßûÓн»µã£»
×ÛÉÏ£¬µ±P£¨2£¬$\frac{10}{3}$£©Ê±£¬Ö±ÏßOPÓëÅ×ÎïÏßÓÐÁ½¸ö½»µã£»µ±P£¨2£¬-2£©Ê±£¬Ö±ÏßOPÓëÅ×ÎïÏßûÓн»µã£®

µãÆÀ ÕâµÀ¶þ´Îº¯Êý×ÛºÏÌ⿼²éµÄÄÚÈݽÏΪ³£¼û£¬Ö÷񻃾¼°µ½£ºº¯Êý½âÎöʽµÄÈ·¶¨¡¢Öá¶Ô³ÆÍ¼ÐεÄÐÔÖÊ¡¢×ø±êϵÁ½µã¼äµÄ¾àÀ빫ʽÒÔ¼°º¯ÊýͼÐν»µã×ø±êµÄÇ󷨵È֪ʶ£¬×ÅÖØ»ù´¡ÄÚÈݵĿ¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÔÚ¡ÑOÖУ¬ÒÑÖª$\widehat{AB}$=2$\widehat{AC}$£¬ÄÇôÏß¶ÎABÓë2ACµÄ´óС¹ØÏµÊÇ£¼£®£¨´Ó¡°£¼¡±»ò¡°=¡±»ò¡°£¾¡±ÖÐÑ¡Ôñ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÏÂÁбäÐΣº¢ÙÈç¹ûa=b£¬Ôòac2=bc2£»¢ÚÈç¹ûac2=bc2£¬Ôòa=b£»¢ÛÈç¹ûa=b£¬Ôò3a-1=3b-1£»¢ÜÈç¹û$\frac{a}{c}=\frac{b}{c}$£¬Ôòa=b£¬ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢Û¢ÜB£®¢Ù¢Û¢ÜC£®¢Ù¢ÛD£®¢Ú¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÔÚÒÔÏòÓÒΪÕý·½ÏòµÄÊýÖáÉÏ£¬×ó±ßµÄµã±íʾµÄÊý±ÈÓұߵĵã±íʾµÄÊýС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Çëд³öµ¥Ïîʽ$\frac{2}{7}$xy2µÄÒ»¸öͬÀàÏîxy2£¨´ð°¸²»Î¨Ò»£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÒ»´Îº¯Êýy=kx+bÖУ¬xÈ¡²»Í¬ÖµÊ±£¬y¶ÔÓ¦µÄÖµÁбíÈçÏ£º
x¡­-m2-123¡­
y¡­-10n2+1¡­
Ôò²»µÈʽkx+b£¾0£¨ÆäÖÐk£¬b£¬m£¬nΪ³£Êý£©µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®x£¾2B£®x£¾3C£®x£¼2D£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2017½ì½­ËÕÊ¡Á¬ÔƸÛÊйàÔÆÏØÎ÷Ƭ¾ÅÄê¼¶ÏÂѧÆÚµÚÒ»´ÎÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºµ¥Ñ¡Ìâ

Èçͼ£¬µãD£¨0£¬3£©£¬O£¨0£¬0£©£¬C£¨4£¬0£©ÔÚ¡ÑAÉÏ£¬BDÊÇ¡ÑAµÄÒ»ÌõÏÒ£¬Ôòsin¡ÏOBD=£¨¡¡¡¡£©

A. B. C. D.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¨1£©£¬Ò»ÉÈ´°»§´¹Ö±´ò¿ª£¬¼´OM¡ÍOP£¬ACÊdz¤¶È²»±äµÄ»¬¶¯Ö§¼Ü£¬ÆäÖÐÒ»¶Ë¹Ì¶¨ÔÚ´°»§µÄµãA´¦£¬ÁíÒ»¶ËÔÚÏß¶ÎOPÉÏ»¬¶¯£¬½«´°»§OM°´Í¼Ê¾·½ÏòÏòÄÚÐýת45¡ãµ½´ïONλÖã¬Èçͼ£¨2£©£¬´Ëʱ£¬µãA¡¢CµÄ¶ÔӦλÖ÷ֱðÊǵãB¡¢D£¬²âÁ¿³ö¡ÏODBΪ37¡ã£¬µãDµ½µãOµÄ¾àÀëΪ28cm£®
£¨1£©ÇóBµãµ½OPµÄ¾àÀ룮
£¨2£©Ç󻬶¯Ö§¼ÜACµÄ³¤£®
£¨²Î¿¼Êý¾Ý£ºsin37¡ã=$\frac{3}{5}$£¬cos37¡ã=$\frac{4}{5}$£¬tan37¡ã=$\frac{3}{4}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁÐͼÐÎÖУ¬²»ÊÇÖá¶Ô³ÆÍ¼ÐεÄÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸