| A. | ①②③④ | B. | ①②④⑤ | C. | ①②③⑤ | D. | ①③④⑤ |
分析 根据等边三角形的性质可以得出△ACE≌△DCB,就可以得出∠CAE=∠CDB,∠AEC=∠DBC,通过证明△CEG≌△CBH就可以得出CG=CH,GE=HB,可以得出△GCH是等边三角形,就可以得出∠GHC=60°,就可以得出GH∥AB,由∠DCH≠∠DHC就可以得出CD≠DH,就可以得出AD≠DH,根据∠AFD=∠EAB+∠CBD=∠CDB+∠CBD=∠ACD=60°,进而得出结论.
解答 解:∵△ACD和△BCE是等边三角形,
∴AD=AC=CD,CE=CB=BE,∠ACD=∠BCE=60°.
∵∠ACB=180°,
∴∠DCE=60°.
∴∠DCE=∠BCE.
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB.
在△ACE和△DCB中,
$\left\{\begin{array}{l}{AC=DC}\\{∠ACE=∠DCB}\\{CE=CB}\end{array}\right.$,
∴△ACE≌△DCB(SAS),
∴AE=BD,∠CAE=∠CDB,∠AEC=∠DBC.
在△CEG和△CBH中,
$\left\{\begin{array}{l}{∠AEC=∠DBC}\\{CE=CB}\\{∠DCE=∠BCE}\end{array}\right.$,
∴△CEG≌△CBH(ASA),
∴CG=CH,GE=HB,
∴△CGH为等边三角形,
∴∠GHC=60°,
∴∠GHC=∠BCH,
∴GH∥AB.
∵∠AFD=∠EAB+∠CBD,
∴∠AFD=∠CDB+∠CBD=∠ACD=60°.
∵∠DHC=∠HCB+∠HBC=60°+∠HBC,∠DCH=60°
∴∠DCH≠∠DHC,
∴CD≠DH,
∴AD≠DH.
综上所述,正确的有:①②④⑤.
故选B.
点评 本题考查了等边三角形的判定与性质的运用,全等三角形的判定及性质的运用,三角形的外角与内角之间的关系的运用,平行线的判定的运用,解答时证明三角形全等是关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 9×106 | B. | 90×106 | C. | 9×107 | D. | 0.9×108 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com