分析 (1)①过点D作DF⊥x轴于点F,先通过三角形全等求得D的坐标,把D的坐标和a=-$\frac{1}{3}$,c=0代入y=ax2+bx+c即可求得抛物线的解析式;
②先证得CD∥x轴,进而求得要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,-$\frac{1}{3}$x2+$\frac{4}{3}$x),分两种情况讨论即可求得;
(2)若符合条件的Q点的个数是3个,根据tan∠QOB=tan∠BAO=$\frac{OB}{OA}$=$\frac{1}{2}$,得到直线OQ的解析式为y=-$\frac{1}{2}$x,要使直线OQ与抛物线y=ax2+bx+c有一个交点,所以方程ax2-4ax+3a+1=-$\frac{1}{2}$x有两个相等的实数根,所以△=(-4a+$\frac{1}{2}$)2-4a(3a+1)=0,即4a2-8a+$\frac{1}{4}$=0,解得a=$\frac{4±\sqrt{15}}{4}$,.
解答
解:(1)①过点D作DF⊥x轴于点F,如图1,
∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,
∴∠DBF=∠BAO,
又∵∠AOB=∠BFD=90°,AB=BD,
∴△AOB≌△BFD(AAS)
∴DF=BO=1,BF=AO=2,
∴D的坐标是(3,1),
根据题意,得a=-$\frac{1}{3}$,c=0,且a×32+b×3+c=1,
∴b=$\frac{4}{3}$,
∴该抛物线的解析式为y=-$\frac{1}{3}$x2+$\frac{4}{3}$x;
②∵点A(0,2),B(1,0),点C为线段AB的中点,
∴C($\frac{1}{2}$,1),
∵C、D两点的纵坐标都为1,
∴CD∥x轴,
∴∠BCD=∠ABO,![]()
∴∠BAO与∠BCD互余,
要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,
设P的坐标为(x,-$\frac{1}{3}$x2+$\frac{4}{3}$x),
(Ⅰ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图2,
则tan∠POB=tan∠BAO,即$\frac{PG}{OG}$=$\frac{BO}{AO}$,
∴$\frac{-\frac{1}{3}{x}^{2}+\frac{4}{3}x}{x}$=$\frac{1}{2}$,解得x1=0(舍去),x2=$\frac{5}{2}$,
∴-$\frac{1}{3}$x2+$\frac{4}{3}$x=$\frac{5}{4}$,
∴P点的坐标为($\frac{5}{2}$,$\frac{5}{4}$);![]()
(Ⅱ)当P在x轴的下方时,过P作PG⊥x轴于点G,如图3
则tan∠POB=tan∠BAO,即$\frac{PG}{OG}$=$\frac{BO}{AO}$,
∴$\frac{\frac{1}{3}{x}^{2}-\frac{4}{3}x}{x}$=$\frac{1}{2}$,解得x1=0(舍去),x2=$\frac{11}{2}$,
∴-$\frac{1}{3}$x2+$\frac{4}{3}$x=-$\frac{11}{4}$,
∴P点的坐标为($\frac{11}{2}$,-$\frac{11}{4}$);
综上,在抛物线上是否存在点P($\frac{5}{2}$,$\frac{5}{4}$)或($\frac{11}{2}$,-$\frac{11}{4}$),使得∠POB与∠BCD互余.
(2)如图3,∵D(3,1),E(1,1),
抛物线y=ax2+bx+c过点E、D,代入可得$\left\{\begin{array}{l}{a+b+c=1}\\{9a+3b+c=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=-4a}\\{c=1+3a}\end{array}\right.$,
所以y=ax2-4ax+3a+1.
分两种情况:
①当抛物线y=ax2+bx+c开口向下时,若满足∠QOB与∠BCD互余且符合条件的Q点的个数不可能是3个 ![]()
②当抛物线y=ax2+bx+c开口向上时,
(i)当点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c必有两个交点,符合条件的点Q必定有2个;
(ii)当点Q在x轴的下方时,要使直线OQ与抛物线y=ax2+bx+c只有1个交点,才能使符合条件的点Q共3个.
根据(2)可知,要使得∠QOB与∠BCD互余,则必须∠QOB=∠BAO,
∴tan∠QOB=tan∠BAO=$\frac{OB}{OA}$=$\frac{1}{2}$,此时直线OQ的解析式为y=-$\frac{1}{2}$x,要使直线OQ与抛物线y=ax2+bx+c有一个交点,所以方程ax2-4ax+3a+1=-$\frac{1}{2}$x有两个相等的实数根,所以△=(-4a+$\frac{1}{2}$)2-4a(3a+1)=0,即4a2-8a+$\frac{1}{4}$=0,解得a=$\frac{4±\sqrt{15}}{4}$,
∵抛物线的顶点在x轴下方
∴$\frac{4a(3a+1)-16{a}^{2}}{4a}$<0,
∴a>1,
∴a=$\frac{4-\sqrt{15}}{4}$舍去
综上所述,a的值为a=$\frac{4+\sqrt{15}}{4}$.
点评 本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,正切函数等,分类讨论的思想是本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com