精英家教网 > 初中数学 > 题目详情
4.已知,点O在线段AB上,AB=6,OC为射线,且∠BOC=45°.动P以每秒1个单位长度的速度从点O出发,沿射线OC做匀速运动.设运动时间为t 秒.

(1)如图1,若AO=2.
①当 t=6秒时,则OP=6,S△ABP=9$\sqrt{2}$;
②当△ABP与△PBO相似时,求t的值;
(2)如图2,若点O为线段AB的中点,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求AQ•BP的值.

分析 (1)①如图1中,作PE⊥AB于E.求出PE的长,根据S△APB=$\frac{1}{2}$•AB•PE,即可计算.
②如图1中,过点B作OC的垂线,垂足为H,由△ABP∽△PBO,得$\frac{AB}{PB}$=$\frac{PB}{BO}$,即PB2=BO•BA=24,推出BP=$2\sqrt{6}$,再利用勾股定理求出OH、HP即可解决问题.
(2)如图中,作OE∥AP,交BP于点E.由△QAO∽△OEP,得$\frac{AQ}{EO}=\frac{AO}{EP}$,即AQ•EP=EO•AO,由三角形中位线定理得OE=3,推出AQ•EP=9,由此即可解决问题.

解答 解:(1)①如图1中,作PE⊥AB于E.

在Rt△OPE中,OP=6,∠POE=45°,
∴PE=OP•sin45°=3$\sqrt{2}$,
∴S△APB=$\frac{1}{2}$•AB•PE=9$\sqrt{2}$,
故答案为6,9$\sqrt{2}$.

②如图1中,过点B作OC的垂线,垂足为H,
∵△ABP∽△PBO,
∴$\frac{AB}{PB}$=$\frac{PB}{BO}$,
∴PB2=BO•BA=24,
∴BP=$2\sqrt{6}$,
在Rt△OHB中,∵∠BOH=45°,OB=4,
∴OH=HB=2$\sqrt{2}$,
在Rt△PHB中,PH=$\sqrt{P{B}^{2}-B{H}^{2}}$=4
∴OP=$2\sqrt{2}$+4,
∴t=$2\sqrt{2}$+4(秒)时,△ABP∽△PBO.

(2)如图中,作OE∥AP,交BP于点E.

∵AP=AB,
∴∠APB=∠B,
∴∠OEB=∠APB=∠B,
∵AQ∥BP,
∴∠QAB+∠B=180°.
又∵∠OEP+∠OEB=180°,
∴∠OEP=∠QAB,
又∵∠AOC=∠2+∠B=∠1+∠QOP,
∵∠B=∠QOP,
∴∠AOQ=∠OPE,
∴△QAO∽△OEP,
∴$\frac{AQ}{EO}=\frac{AO}{EP}$,即AQ•EP=EO•AO,
由三角形中位线定理得OE=3,
∴AQ•EP=9,
AQ•BP=AQ•2EP=2AQ•EP=18.

点评 本题考查相似三角形综合题、三角形的面积、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

14.如图,AB∥CD,BE交CD于点F,若∠B=40°,则∠DFE的度数为(  )
A.40°B.50°C.140°D.150°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.小聪与同桌小明在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,试确定线段AE与DB的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:

(1)取特殊情况,探索讨论:
当点E为AB的中点时,如图(2),确定线段AE与DB的大小关系,请你写出结论:AE=DB(填“>”,“<”或“=”),并说明理由.
(2)特例启发,解答题目:
解:题目中,AE与DB的大小关系是:AE=DB(填“>”,“<”或“=”).理由如下:如图(3),过点E作EF∥BC,交AC于点F.(请你将剩余的解答过程完成)
(3)拓展结论,设计新题:
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,若△ABC的边长为1,AE=2,则CD的长为3或1.(请你画出图形,并直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:关于x的一元二次方程x2-6x-m=0有两个实数根.
(1)求m的取值范围;
(2)如果m取符合条件的最小整数,且一元二次方程x2-6x-m=0与x2+nx+1=0有一个相同的根,求常数n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知在平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=-$\frac{1}{3}$.
①求点D的坐标及该抛物线的解析式;
②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是3个,请直接写出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图所示,直线AB、CD相交于点O,OM⊥AB.
(1)若∠1=∠2,判断ON与CD的位置关系,并说明理由;
(2)若∠1=$\frac{1}{4}$∠BOC,求∠MOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,如果AC=2$\sqrt{5}$,且tan∠ACD=2.求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为(  )
A.10B.6C.5D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.反比例函数y=-$\frac{3}{x}$的图象经过(  )象限.
A.一、二B.一、三C.二、三D.二、四

查看答案和解析>>

同步练习册答案