精英家教网 > 初中数学 > 题目详情
10.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若AB=4+$\sqrt{3}$,BC=2$\sqrt{3}$,求⊙O的半径.

分析 (1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC-∠P,可得出OA⊥PA,从而得出结论;
(2)过点C作CE⊥AB于点E.在Rt△BCE中,∠B=60°,BC=2$\sqrt{3}$,于是得到BE=$\frac{1}{2}$BC=$\sqrt{3}$,CE=3,根据勾股定理得到AC=$\sqrt{A{E}^{2}+C{E}^{2}}$=5,于是得到AP=AC=5.解直角三角形即可得到结论.

解答 (1)证明:连接OA,
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠OAC=∠OCA=30°,
又∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=∠AOC-∠P=90°,
∴OA⊥PA,
∴PA是⊙O的切线;

(2)解:过点C作CE⊥AB于点E.
在Rt△BCE中,∠B=60°,BC=2$\sqrt{3}$,
∴BE=$\frac{1}{2}$BC=$\sqrt{3}$,CE=3,
∵AB=4+$\sqrt{3}$,
∴AE=AB-BE=4,
∴在Rt△ACE中,AC=$\sqrt{A{E}^{2}+C{E}^{2}}$=5,
∴AP=AC=5.
∴在Rt△PAO中,OA=$\frac{5\sqrt{3}}{3}$,
∴⊙O的半径为$\frac{5\sqrt{3}}{3}$.

点评 本题考查了切线的判定及圆周角定理,解答本题的关键是掌握切线的判定定理、圆周角定理及含30°直角三角形的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,一次函数y=k1x-1的图象经过A(0,-1)、B(1,0)两点,与反比例函数y=$\frac{{k}_{2}}{x}$的图象在第一象限内的交点为M,若△OBM的面积为1.
(1)求一次函数和反比例函数的表达式;
(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;
(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,等腰Rt△ABC中,∠ABC=90°,AB=BC,点A、B分别在坐标轴上.
(1)如图①,若点C的横坐标为5,直接写出点B的坐标(0,2);(提示:过C作CD⊥y轴于点D,利用全等三角形求出OB即可)
(2)如图②,若点A的坐标为(-6,0),点B在y轴的正半轴上运动时,分别以OB、AB为边在第一、第二象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于点P,当点B在y轴的正半轴上移动时,PB的长度是否发生改变?若不变,求出PB的值.若变化,求PB的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.作图:(温馨提醒:确认后,在答题纸上用黑色水笔描黑)
如图,已知平面上有四个点A,B,C,D.
(1)作射线AD;
(2)作直线BC与射线AD交于点E;
(3)连接AC,再在AC的延长线上作线段CP=AC.
(要求尺规作图,保留作图痕迹,不写作图步骤)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.直线AB:y=-x+b分别与x,y轴交于A,B两点,点A的坐标为 (3,0),过点B的直线交x轴负半轴于点C,且OB:OC=3:1.
(1)求点B的坐标及直线BC的解析式;
(2)在x轴上方存在点D,使以点A,B,D为顶点的三角形与△ABC全等,画出△ABD并请直接写出点D的坐标;
(3)在线段OB上存在点P,使点P到点B,C的距离相等,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:$({\frac{1}{12}-\frac{5}{24}})×(-24)-4$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.购买2个单价为a元的面包和3瓶单价为b元的饮料,所需钱数为2a+3b元.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图中每个阴影部分是以多边形各顶点为圆心,2为半径的扇形,并且所有多边形的每条边长都大于2,则第n个多边形中,所有扇形面积之和是2nπ(结果保留π).

查看答案和解析>>

同步练习册答案