【题目】已知椭圆![]()
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
,
,
是椭圆
上关于
轴对称的任意两个不同的点,连结
交椭圆
于另一点
,证明直线
与
轴相交于定点
;
(Ⅲ)在(Ⅱ)的条件下,过点
的直线与椭圆
交于
,
两点,求
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(kx+
)ex﹣2x,若f(x)<0的解集中有且只有一个正整数,则实数k的取值范围为 ( )
A. [
,
)B. (
,
]
C. [
)D. [
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
为半椭圆
的左、右两个顶点,
为上焦点,将半椭圆和线段
合在一起称为曲线![]()
(1)求
的外接圆圆心的坐标
(2)过焦点
的直线
与曲线
交于
两点,若
,求所有满足条件的直线
的方程
(3)对于一般的封闭曲线,曲线上任意两点距离的最大值称为该曲线的“直径”,如圆的“直径”就是通常的直径,椭圆的“直径”就是长轴的长,求该曲线
的“直径”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中有如下正确结论:
为曲线
(
、
为非零实数,且不同时为负)上一点,则过点
的切线方程为
.
(1)已知
为椭圆
上一点,
为过点
的椭圆的切线,若直线
与直线
的斜率分别为
与
,求证:
为定值;
(2)过椭圆
上一点
引椭圆
的切线,与
轴交于点
.若
为正三角形,求椭圆
的方程;
(3)求与圆
及(2)中的椭圆
均相切的直线
与坐标轴围成的三角形的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线
-
=1(a>0,b>0)的离心率为2,焦点到渐近线的距离等于
,过右焦点F2的直线l交双曲线于A,B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6
,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x,y的方程x2+y2﹣4x+4y+m=0表示一个圆.
(1)求实数m的取值范围;
(2)若m=4,过点P(0,2)的直线l与圆相切,求出直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S-ABCD的底面是边长为1的正方形,则棱SB垂直于底面.
![]()
(1)求证:平面SBD⊥平面SAC;
(2)若SA与平面SCD所成角的正弦值为
,求SB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com