【题目】设函数
.
(1)求函数
的单调区间;
(2)若函数有两个零点,求满足条件的最小正整数
的值.
【答案】(1) 当
时,
的单调递增区间为
;当
时,
的单调递减区间为
,单调递增区间为
;(2)3.
【解析】
(1)先求导,再对
进行分类讨论,利用导数与函数的单调性的关系即可得出;
(2)由(1)可知,若函数
有两个零点,则
,且
.转化为求满足
的最小正整数
的值,利用单调性判断其零点所在的最小区间即可求得.
(1)函数
的定义域为
.
.
,
当
时,
,函数
在
上单调递增;
当
时,由
,得
;由
,得
.所以函数
在
上单调递减,在
上单调递增.
综上所述,当
时,
的单调递增区间为
;
当
时,
的单调递减区间为
,单调递增区间为
.
(2)由(1)可知,若函数
有两个零点,则
,且
.
即
,
即
,
.
令
,易知
在
上是增函数,且
,
又
,
即
.
所以存在
,使
,
当
时,
;当
时,
.
所以满足
的最小正整数
的值为3.
又
时,
,且函数
在
上单调递减,在
上单调递增,
时,函数
有两个零点.
综上,满足条件的最小正整数
的值为3.
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn为数列{an}的前n项和,则
的最小值为( )
A.4B.3C.
D.2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,PA=AD=DC=2,AB=4且AB∥CD,∠BAD=90°.
(1)求证:BC⊥PC;
(2)求PB与平面PAC所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面推理是类比推理的是( )
A.两条直线平行,则同旁内角互补,若
和
是同旁内角,则![]()
B.某校高二有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此推测各班都超过50位团员
C.由平面三角形的面积
(其中
是三角形的周长,
是三角形内切圆的半径),推测空间中三棱锥的体积
(其中
是三棱锥的表面积,
是三棱锥内切球的半径)
D.一切偶数能被2整除,
是偶数,故
能被2整数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)
性别 | 学生人数 | 抽取人数 |
女生 | 18 |
|
男生 |
| 3 |
(1)求
和
;
(2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
的参数方程是
(
是参数),以坐标原点为原点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)判断直线
与曲线
的位置关系;
(2)过直线
上的点作曲线
的切线,求切线长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如右图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
![]()
(1)完成
列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
(2)①按照分层抽样的方式,在上述样本中,从易倒伏和抗倒伏两组中抽取9株玉米,设取出的易倒伏矮茎玉米株数为
,求
的分布列(概率用组合数算式表示);
②若将频率视为概率,从抗倒伏的玉米试验田中再随机抽取出50株,求取出的高茎玉米株数的数学期望和方差.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修
:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,以
轴的正半轴为极轴,建立极坐标系.曲线
的极坐标方程为
.
(1)写出
的普通方程和
的直角坐标方程;
(2)设点
在
上,点
在
上,求
的最小值及此时点
的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com