精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.

(1)求直线l的直角坐标方程与曲线C的普通方程;

(2)Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点AB,始终满足|AB|4,求MAB面积的最大值与最小值.

【答案】1;(2)最大值为,最小值为.

【解析】

1)由,可将直线的方程转化为直角坐标方程,由曲线的参数方程消去参数,可得其普通方程;

2)设,由条件可得,再由到直线的距离求出最值即可.

解:(1直线的极坐标方程为,即

,可得直线的直角坐标方程为

将曲线的参数方程,消去参数

得曲线的普通方程为

2)设

的极坐标化为直角坐标为

到直线的距离,其中

所以

面积的最大值为,最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCDEF分别是线段ADPB的中点,PAAB1.

(1)证明:EF∥平面PDC

(2)求点F到平面PDC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,曲线的参数方程为为参数),曲线上的点对应的参数.在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.射线与曲线交于点

1)求曲线的直角坐标方程;

2)若点在曲线上,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在四棱锥SAFCD中,平面SCD⊥平面AFCD,∠DAF=∠ADC90°,AD1AF2DC4BE分别为AFSA的中点.

1)求证:平面BDE∥平面SCF

2)求二面角ASCB的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为零的等差数列{an}满足:a3+a820,且a5a2a14的等比中项.

1)求数列{an}的通项公式;

2)设数列{bn}满足,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,设函数

1)求函数的单调区间;

2)当时,若对任意的,均有,求的取值范围.

注:为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若存在区间,使得,则称函数可等域函数,区间为函数的一个可等域区间”.给出下列四个函数:

;

;

;

.

其中存在唯一可等域区间可等域函数的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的左右焦点分别为,左顶点为,点在椭圆上,且的面积为.

(1)求椭圆的方程;

(2)过原点且与轴不重合的直线交椭圆两点,直线分别与轴交于点,.求证:以为直径的圆恒过交点,并求出面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,.

(1)若曲线处的切线方程为,求的值;

(2)在(1)的条件下,求函数零点的个数;

(3)若不等式对任意都成立,求a的取值范围.

查看答案和解析>>

同步练习册答案