【题目】在如图所示的几何体中,四边形ABCD为正方形,
平面ABCD,
,
.
![]()
(1)求证:
平面PAD;
(2)求PD与平面PCE所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥
中,底面
是矩形,
平面
,AB 1,AP AD 2.
(1)求直线
与平面
所成角的正弦值;
(2)若点M,N分别在AB,PC上,且
平面
,试确定点M,N的位置.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是正方形空地,边长为
,电源在点P处,点P到边
距离分别为
.某广告公司计划在此空地上竖一块长方形液晶广告屏幕
,
,线段
必须过点P,端点
在边
上,端点
在正方形
的边上,设
,液晶广告屏幕
的面积为
.
![]()
(1)用
的代数式表示AM;
(2) 求
关于
的函数关系式;
(3)当
取何值时,液晶广告屏幕
的面积
最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
过点
,其参数方程为
(
为参数,
).以
为极点,
轴非负半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)已知曲线
与曲线
交于
两点,且
,求实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
的参数方程为
(
为参数),在以坐标原点为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
(
且
).
(I)求直线
的极坐标方程及曲线
的直角坐标方程;
(Ⅱ)已知
是直线
上的一点,
是曲线
上的一点,
,
,若
的最大值为2,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体
中,梯形
与平行四边形
所在平面互相垂直,
,
,
,
,
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)判断线段
上是否存在点
,使得平面
平面
?若存在,求 出
的值,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com