【题目】从某企业的某种产品中抽取
件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
![]()
(Ⅰ)求这
件产品质量指标值的样本平均数
和样本方差
(同一组数据用该区间的中点值作代表,记作
,
);
(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值
服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
(i)若使
的产品的质量指标值高于企业制定的合格标准,则合格标准的质量指标值大约为多少?
(ii)若该企业又生产了这种产品
件,且每件产品相互独立,则这
件产品质量指标值不低于
的件数最有可能是多少?
附:参考数据与公式:
,
;若
,则①
;②
;③
.
【答案】(Ⅰ)
;
;(Ⅱ)(i)
;(ii)
.
【解析】
(Ⅰ)根据频率分布直方图估计平均数的方法可直接求得
;利用方差计算公式
可求得样本方差;(Ⅱ)(i)根据
原则可验证出
,求得
即为结果;(ii)根据
原则可得到
,从而得到这
产品的质量指标值不低于
的件数
服从于
,
;根据二项分布概率公式构造不等式
,解不等式可求得
,从而可得结果.
(Ⅰ)
![]()
![]()
(Ⅱ)由题意知:![]()
(i)![]()
∴
时,满足题意
即合格标准的质量指标值约为:![]()
(ii)由![]()
可知每件产品的质量指标值不低于
的事件概率为![]()
记这
产品的质量指标值不低于
的件数为![]()
则
,其中![]()
恰有
件产品的质量指标值不低于
的事件概率:![]()
则
,解得:![]()
当
时,
;
当
时,![]()
由此可知,在这
件产品中,质量指标值不低于
的件数最有可能是![]()
科目:高中数学 来源: 题型:
【题目】2018 年1月16日,由新华网和中国财经领袖联盟联合主办的2017中国财经年度人物评选结果揭晓,某知名网站财经频道为了解公众对这些年度人物是否了解,利用网络平台进行了调查,并从参与调查者中随机选出
人,把这
人分为
两类(
类表示对这些年度人物比较了解,
类表示对这些年度人物不太了解),并制成如下表格:
年龄段 |
|
|
|
|
人数 |
|
|
|
|
|
|
|
|
|
(1)若按照年龄段进行分层抽样,从这
人中选出
人进行访谈,并从这
人中随机选出两名幸运者给予奖励.求其中一名幸运者的年龄在
岁~
岁之间,另一名幸运者的年龄在
岁~
岁之间的概率;(注:从
人中随机选出
人,共有
种不同选法)
(2)如果把年龄在
岁~
岁之间的人称为青少年,年龄在
岁~
岁之间的人称为中老年,则能否在犯错误的概率不超过
的前提下认为青少年与中老年人在对财经年度人物的了解程度上有差异?
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
,其中![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过椭圆
的左焦点
,作斜率为
的直线
,交椭圆
于
两点.
(1)若原点
到直线
的距离为
,求直线
的方程;
(2)设点
,直线
与椭圆
交于另一点
,直线
与椭圆
交于另一点
.设
的斜率为
,则
是否为定值?若是,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着城市地铁建设的持续推进,市民的出行也越来越便利.根据大数据统计,某条地铁线路运行时,发车时间间隔t(单位:分钟)满足:4≤t≤15,
N,平均每趟地铁的载客人数p(t)(单位:人)与发车时间间隔t近似地满足下列函数关系:
,其中
.
(1)若平均每趟地铁的载客人数不超过1500人,试求发车时间间隔t的值.
(2)若平均每趟地铁每分钟的净收益为
(单位:元),问当发车时间间隔t为多少时,平均每趟地铁每分钟的净收益最大?井求出最大净收益.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的焦距为
,椭圆
上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,点
(0,1),且
=
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣2)ex﹣
+
x,其中
∈R,e是自然对数的底数.
(1)当
>0时,讨论函数f(x)在(1,+∞)上的单调性;
(2)若函数g(x)=f
(x)+2﹣
,证明:使g(x)≥0在
上恒成立的实数a能取到的最大整数值为1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com