精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=$x+\frac{a}{x+1}$,x∈[0,+∞).
(1)当a=2时,求函数f(x)的最小值;
(2)当0<a<1时,求函数f(x)的最小值.
(3)当a=2时,且(x+1)f(x)-bx+b>0在[1,+∞)恒成立,求b的取值范围.

分析 (1)把a=2代入f(x)=x+$\frac{a}{x+1}$,利用基本不等式转化求解函数的最小值即可.
(2)当0<a<1时,设x1>x2≥0,通过f(x1)-f(x2)=x1+$\frac{a}{{{x_1}+1}}$-x2-$\frac{a}{{{x_2}+1}}$=(x1-x2)$[1-\frac{a}{({x}_{1}+1)({x}_{2}+1)}]$.判断函数f(x)在[0,+∞)上单调递增,求出最小值.
(3)当a=2时,原不等式可转化为(x+1)($x+\frac{2}{x+1}$)>b(x-1)恒成立,得到b<$\frac{{x}^{2}+x+2}{x-1}$,构造函数g(x)=$\frac{{x}^{2}+x+2}{x-1}$,然后利用基本不等式求解表达式的最小值,即可得到b 的范围.

解答 解:(1)把a=2代入f(x)=x+$\frac{a}{x+1}$,
得f(x)=x+$\frac{2}{x+1}$=(x+1)+$\frac{2}{x+1}$-1
∵x∈[0,+∞),
∴x+1>0,$\frac{2}{x+1}$>0,∴x+1+$\frac{2}{x+1}$≥$2\sqrt{2}$…..…(3分)
当且仅当x+1=$\frac{2}{x+1}$,即x=$\sqrt{2}$-1时,f(x)取最小值.
此时,f(x)min=2$\sqrt{2}$-1….(4分)
(2)当0<a<1时,
f(x)=x+1+$\frac{a}{x+1}$-1,若x+1+$\frac{a}{x+1}$≥$2\sqrt{a}$,
则当且仅当x+1=$\frac{a}{x+1}$时取等号,此时x=$\sqrt{a}$-1<0(不合题意),
因此,上式等号取不到.…..(5分)
设x1>x2≥0,则
f(x1)-f(x2)=x1+$\frac{a}{{{x_1}+1}}$-x2-$\frac{a}{{{x_2}+1}}$
=(x1-x2)$[1-\frac{a}{({x}_{1}+1)({x}_{2}+1)}]$.
∵x1>x2≥0,∴x1-x2>0,x1+1>1,x2+1≥1.
∴(x1+1)(x2+1)>1.而0<a<1,
∴$\frac{a}{{({x_1}+1)({x_2}+1)}}$<1,∴f(x1)-f(x2)>0.
∴f(x)在[0,+∞)上单调递增,∴f(x)min=f(0)=a….8分
(3)当a=2时,原不等式可转化为(x+1)($x+\frac{2}{x+1}$)>b(x-1)恒成立,
∴x2+x+2>b(x-1),即b<$\frac{{x}^{2}+x+2}{x-1}$…(9分)
令g(x)=$\frac{{x}^{2}+x+2}{x-1}$,则g(x)=$\frac{(x-1)^{2}+3(x-1)+4}{x-1}$=x-1+3+$\frac{4}{x-1}$≥7(当且仅当x=3时等号成立),
因此g(x)min=7,
∴$b<7…(12分)\end{array}$

点评 本题考查函数的最值的求法,函数的单调性以及基本不等式的应用,构造法的应用,转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.用随机事件发生的频率去估算这个事件发生的概率.下列结论正确的是(  )
A.事件A发生的概率P(A)是0<P(A)<1
B.事件A发生的概率P(A)=0.999,则事件A是必然事件
C.用某种药物对患有胃溃疡的500名病人治疗,结果有380人有明显的疗效,现有胃溃疡的病人服用此药,则估计有明显疗效的可能性为76%
D.某奖券中奖率为0.5,则某人购买此券10张,一定有5张中奖

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z=$\frac{2}{1-i}$(i是虚数单位),则|z|=(  )
A.$\frac{\sqrt{2}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数y=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$),x∈R
(1)求y的最小正周期
(2)求y的最大值及此时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的n的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等比数列{an}中,a1=1,公比q=2,则a3的值为(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={x|-1<x<3},N={x|x2+2x-3<0},则集合M∩N等于(  )
A.{x|-1<x<3}B.{x|-3<x<1}C.{x|-1<x<1}D.{x|-3<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲、乙二人做射击游戏,甲、乙射击击中与否是相互独立事件.规则如下:若射击一次击中,则原射击人继续射击;若射击一次不中,就由对方接替射击.已知甲、乙二人射击一次击中的概率均为$\frac{1}{3}$,且第一次由甲开始射击.
①求前3次射击中甲恰好击中2次的概率$\frac{2}{27}$;
②求第4次由甲射击的概率$\frac{13}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.定义在R上的可导函数f(x),其导函数为f'(x)满足f'(x)>2x恒成立,则不等式f(4-x)+8x<f(x)+16的解集为(  )
A.(2,+∞)B.(4,+∞)C.(-∞,2)D.(-∞,4)

查看答案和解析>>

同步练习册答案