【题目】某种规格的矩形瓷砖
根据长期检测结果,各厂生产的每片瓷砖质量
都服从正态分布
,并把质量在
之外的瓷砖作为废品直接回炉处理,剩下的称为正品.
(Ⅰ)从甲陶瓷厂生产的该规格瓷砖中抽取10片进行检查,求至少有1片是废品的概率;
(Ⅱ)若规定该规格的每片正品瓷砖的“尺寸误差”计算方式为:设矩形瓷砖的长与宽分别为
、
,则“尺寸误差”
为
,按行业生产标准,其中“优等”、“一级”、“合格”瓷砖的“尺寸误差”范围分别是
,
、
,
、
,
(正品瓷砖中没有“尺寸误差”大于
的瓷砖),每片价格分别为7.5元、6.5元、5.0元.现分别从甲、乙两厂生产的该规格的正品瓷砖中随机抽取100片瓷砖,相应的“尺寸误差”组成的样本数据如下:
尺寸误差 | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
频数 | 10 | 30 | 30 | 5 | 10 | 5 | 10 |
(甲厂瓷砖的“尺寸误差”频数表)用这个样本的频率分布估计总体分布,将频率视为概率.
![]()
(ⅰ)记甲厂该种规格的2片正品瓷砖卖出的钱数为
(元
,求
的分布列及数学期望
.
(ⅱ)由如图可知,乙厂生产的该规格的正品瓷砖只有“优等”、“一级”两种,求5片该规格的正品瓷砖卖出的钱数不少于36元的概率.
附:若随机变量
服从正态分布
,则
;
,
,
.
【答案】(Ⅰ)
(Ⅱ)(ⅰ)详见解析(ⅱ)![]()
【解析】
(Ⅰ)先计算出这10片质量全都在
之内(即没有废品)的概率,再用1减之。
(Ⅱ)(ⅰ)用这个样本的频率分布估计总体分布,将频率视为概率,由图得到得该厂生产的一片正品瓷砖为“优等”、“一级”、“合格”的概率分别为0.7、0.2、0.1;再计算出其分布列与期望即可。
(ⅱ)若5片中有
片“优等”品,则
,得到
,则
取4或5;再计算即可得出答案。
(Ⅰ)由正态分布可知,抽取的一片瓷砖的质量在
之内的概率为0.9974,则这10片质量全都在
之内(即没有废品)的概率为
;
则这10片中至少有1片是废品的概率为
;
(Ⅱ)(ⅰ)由已知数据,用这个样本的频率分布估计总体分布,将频率视为概率,
得该厂生产的一片正品瓷砖为“优等”、“一级”、“合格”的概率分别为0.7、0.2、0.1;
则
的可能取值为15,14,12.5,13,11.5,10元;
计算
,
,
,
,
,
,
得到
的分布列如下:
| 15 | 14 | 13 | 12.5 | 11.5 | 10 |
| 0.49 | 0.28 | 0.04 | 0.14 | 0.04 | 0.01 |
数学期望为
![]()
![]()
(元
;
(ⅱ)设乙陶瓷厂5片该规格的正品瓷砖中有
片“优等”品,则有
片“一级”品,
由已知
,解得
,则
取4或5;
故所求的概率为
![]()
![]()
.
科目:高中数学 来源: 题型:
【题目】选修4 — 4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),以原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
(
).
(1)分别写出直线
的普通方程与曲线
的直角坐标方程;
(2)已知点
,直线
与曲线
相交于
两点,若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为圆
上一动点,
在
轴,
轴上的射影分别为点
,
,动点
满足
,记动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
的直线与曲线
交于
,
两点,判断以
为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,其中
.
(1)若函数
在点
处的切线方程为
,求
的值;
(2)若函数
有两个极值点
,证明:
成等差数列;
(3)若函数
有三个零点
,对任意的
,不等式
恒成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线
的准线
与
轴交于椭圆
的右焦点
为
的左焦点.椭圆的离心率为
,抛物线
与椭圆
交于
轴上方一点
,连接
并延长其交
于点
,
为
上一动点,且在
之间移动.
![]()
(1)当
取最小值时,求
和
的方程;
(2)若
的边长恰好是三个连续的自然数,当
面积取最大值时,求面积最大值以及此时直线
的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com