【题目】已知曲线
的方程为
.
(1)当
时,试确定曲线
的形状及其焦点坐标;
(2)若直线
交曲线
于点
、
,线段
中点的横坐标为
,试问此时曲线
上是否存在不同的两点
、
关于直线
对称?
(3)当
为大于1的常数时,设
是曲线
上的一点,过点
作一条斜率为
的直线
,又设
为原点到直线
的距离,
分别为点
与曲线
两焦点的距离,求证
是一个定值,并求出该定值.
【答案】(1) 曲线
是焦点在
轴上的椭圆,焦点坐标为
; (2) 见解析;(3)见证明
【解析】
(1)将a代入,两边平方并化简,可得曲线C的方程及形状;
(2)将
代入曲线,利用PQ中点的横坐标为
,求出m,验证判别式是否成立,可得结论.
(3)将曲线C化简,得到焦点坐标,求得
,再求得点到直线
的距离,代入
化简得到定值.
(1)当
时,
,两边平方并化简得
,
∴曲线
是焦点在
轴上的椭圆,其长半轴长为1,短半轴长为
,焦点坐标为
;
(2)将
代入
,消去
,
得
,由题意,
,
即
,解得
或
(舍),此时,
,
,
设
,
,
,
将
代入
,得
,则
,
的中点坐标为
在对称轴
上,∴
,解得
,
不满足
,∴曲线
上不存在不同的两点
、
关于直线
对称;
(3)
,两焦点坐标为
、
,
,
,即
,
∴
,
用
替换
中的
,
可得
,∴
,
∴
.
科目:高中数学 来源: 题型:
【题目】我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于
的偶数可以表示为两个素数的和”,如
.现从不超过
的素数中,随机选取两个不同的数(两个数无序).(注:不超过
的素数有
,
,
,
,
,
)
(1)列举出满足条件的所有基本事件;
(2)求“选取的两个数之和等于
”事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体
中,点
是底面
的中心,
是线段
的上一点。
![]()
(1)若
为
的中点,求直线
与平面
所成角的正弦值;
(2)能否存在点
使得平面
平面
,若能,请指出点
的位置关系,并加以证明;若不能,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:
①“若
,则
”的逆否命题为真命题
②“
”是“函数
在区间
上为增函数”的充分不必要条件
③若
为假命题,则
,
均为假命题
④对于命题
:
,
,则
为:
,![]()
其中真命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果数列
对于任意
,都有
,其中
为常数,则称数列
是“间等差数列”,
为“间公差”.若数列
满足
,
,
.
(1)求证:数列
是“间等差数列”,并求间公差
;
(2)设
为数列
的前n项和,若
的最小值为-153,求实数
的取值范围;
(3)类似地:非零数列
对于任意
,都有
,其中
为常数,则称数列
是“间等比数列”,
为“间公比”.已知数列
中,满足
,
,
,试问数列
是否为“间等比数列”,若是,求最大的整数
使得对于任意
,都有
;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com